Fernando Garces
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Garces.
Immunity | 2015
Fernando Garces; Jeong Hyun Lee; Natalia de Val; Alba Torrents de la Peña; Leopold Kong; Cristina Puchades; Yuanzi Hua; Robyn L. Stanfield; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson
The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.
Immunity | 2016
Jon M. Steichen; Daniel W. Kulp; Talar Tokatlian; Amelia Escolano; Pia Dosenovic; Robyn L. Stanfield; Laura E. McCoy; Gabriel Ozorowski; Xiaozhen Hu; Oleksandr Kalyuzhniy; Bryan Briney; Torben Schiffner; Fernando Garces; Natalia T. Freund; Alexander D. Gitlin; Sergey Menis; Erik Georgeson; Michael Kubitz; Yumiko Adachi; Meaghan Jones; Andrew Ayk Mutafyan; Dong Soo Yun; Christian T. Mayer; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson; Darrell J. Irvine; Michel C. Nussenzweig; William R. Schief
Summary Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.
Cell | 2014
Fernando Garces; Devin Sok; Leopold Kong; Ryan McBride; Helen J. Kim; Karen F. Saye-Francisco; Jean-Philippe Julien; Yuanzi Hua; Albert Cupo; John P. Moore; James C. Paulson; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson
The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans.
Immunity | 2016
Daniel T. MacLeod; Nancy M. Choi; Bryan Briney; Fernando Garces; Lorena S. Ver; Elise Landais; Ben Murrell; Terri Wrin; William Kilembe; Chi-Hui Liang; Alejandra Ramos; Chaoran B. Bian; Lalinda Wickramasinghe; Leopold Kong; Kemal Eren; Chung-Yi Wu; Chi-Huey Wong; Matthew Price; Jill Gilmour; Pat Fast; Anatoli Kamali; Eduard J. Sanders; Omu Anzala; Susan Allen; Eric Hunter; Etienne Karita; Shabir Lakhi; Mubiana Inambao; Vinodh Edward; Linda-Gail Bekker
The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways.
Journal of Virology | 2015
Katie J. Doores; Leopold Kong; Stefanie A. Krumm; Khoa Le; Devin Sok; Uri Laserson; Fernando Garces; Pascal Poignard; Ian A. Wilson; Dennis R. Burton
ABSTRACT The high-mannose patch of human immunodeficiency virus (HIV) envelope (Env) elicits broadly neutralizing antibodies (bnAbs) during natural infection relatively frequently, and consequently, this region has become a major target of vaccine design. However, it has also become clear that antibody recognition of the region is complex due, at least in part, to variability in neighboring loops and glycans critical to the epitopes. bnAbs against this region have some shared features and some distinguishing features that are crucial to understand in order to design optimal immunogens that can induce different classes of bnAbs against this region. Here, we compare two branches of a single antibody lineage, in which all members recognize the high-mannose patch. One branch (prototype bnAb PGT128) has a 6-amino-acid insertion in CDRH2 that is crucial for broad neutralization. Antibodies in this branch appear to favor a glycan site at N332 on gp120, and somatic hypermutation is required to accommodate the neighboring V1 loop glycans and glycan heterogeneity. The other branch (prototype bnAb PGT130) lacks the CDRH2 insertion. Antibodies in this branch are noticeably effective at neutralizing viruses with an alternate N334 glycan site but are less able to accommodate glycan heterogeneity. We identify a new somatic variant within this branch that is predominantly dependent on N334. The crystal structure of PGT130 offers insight into differences from PGT128. We conclude that different immunogens may be required to elicit bnAbs that have the optimal characteristics of the two branches of the lineage described. IMPORTANCE Development of an HIV vaccine is of vital importance for prevention of new infections, and it is thought that elicitation of HIV bnAbs will be an important component of an effective vaccine. Increasingly, bnAbs that bind to the cluster of high-mannose glycans on the HIV envelope glycoprotein, gp120, are being highlighted as important templates for vaccine design. In particular, bnAbs from IAVI donor 36 (PGT125 to PGT131) have been shown to be extremely broad and potent. Combination of these bnAbs enhanced neutralization breadth considerably, suggesting that an optimal immunogen should elicit several antibodies from this family. Here we study the evolution of this antibody family to inform immunogen design. We identify two classes of bnAbs that differ in their recognition of the high-mannose patch and show that different immunogens may be required to elicit these different classes.
Immunity | 2016
Leopold Kong; Bin Ju; Yajing Chen; Linling He; Li Ren; Jiandong Liu; Kunxue Hong; Bin Su; Zheng Wang; Gabriel Ozorowski; Xiaolin Ji; Yuanzi Hua; Yanli Chen; Marc C. Deller; Yanling Hao; Yi Feng; Fernando Garces; Richard Wilson; Kaifan Dai; Sijy O’Dell; Krisha McKee; John R. Mascola; Andrew B. Ward; Richard T. Wyatt; Yuxing Li; Ian A. Wilson; Jiang Zhu; Yiming Shao
VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.
Acta Crystallographica Section D-biological Crystallography | 2015
Leopold Kong; Alba Torrents de la Peña; Marc C. Deller; Fernando Garces; Kwinten Sliepen; Yuanzi Hua; Robyn L. Stanfield; Rogier W. Sanders; Ian A. Wilson
The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.
Cell Reports | 2017
Alba Torrents de la Peña; Jean-Philippe Julien; Steven W. de Taeye; Fernando Garces; Gabriel Ozorowski; Laura K. Pritchard; Anna-Janina Behrens; Eden P. Go; Judith A. Burger; Edith E. Schermer; Kwinten Sliepen; Thomas J. Ketas; Pavel Pugach; Anila Yasmeen; Christopher A. Cottrell; Jonathan L. Torres; Charlotte D. Vavourakis; Marit J. van Gils; Celia C. LaBranche; David C. Montefiori; Heather Desaire; Max Crispin; Per Johan Klasse; Kelly K. Lee; John P. Moore; Andrew B. Ward; Ian A. Wilson; Rogier W. Sanders
Summary The production of native-like recombinant versions of the HIV-1 envelope glycoprotein (Env) trimer requires overcoming the natural flexibility and instability of the complex. The engineered BG505 SOSIP.664 trimer mimics the structure and antigenicity of native Env. Here, we describe how the introduction of new disulfide bonds between the glycoprotein (gp)120 and gp41 subunits of SOSIP trimers of the BG505 and other genotypes improves their stability and antigenicity, reduces their conformational flexibility, and helps maintain them in the unliganded conformation. The resulting next-generation SOSIP.v5 trimers induce strong autologous tier-2 neutralizing antibody (NAb) responses in rabbits. In addition, the BG505 SOSIP.v6 trimers induced weak heterologous NAb responses against a subset of tier-2 viruses that were not elicited by the prototype BG505 SOSIP.664. These stabilization methods can be applied to trimers from multiple genotypes as components of multivalent vaccines aimed at inducing broadly NAbs (bNAbs).
Journal of Experimental Medicine | 2017
Max Medina-Ramírez; Fernando Garces; Amelia Escolano; Patrick Skog; Steven W. de Taeye; Ivan Del Moral-Sanchez; Andrew T. McGuire; Anila Yasmeen; Anna-Janina Behrens; Gabriel Ozorowski; Tom L. G. M. van den Kerkhof; Natalia T. Freund; Pia Dosenovic; Yuanzi Hua; Alexander D. Gitlin; Albert Cupo; Patricia van der Woude; Michael Golabek; Kwinten Sliepen; Tanya R. Blane; Neeltje A. Kootstra; Mariëlle J. van Breemen; Laura K. Pritchard; Robyn L. Stanfield; Max Crispin; Andrew B. Ward; Leonidas Stamatatos; Per Johan Klasse; John P. Moore; David Nemazee
Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resulting in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Leopold Kong; David E. Lee; Rameshwar U. Kadam; Tong Liu; Erick Giang; Travis Nieusma; Fernando Garces; Netanel Tzarum; Virgil L. Woods; Andrew B. Ward; Sheng Li; Ian A. Wilson; Mansun Law
Significance Hepatitis C virus is an important human pathogen, and its E2 envelope glycoprotein is the major target of neutralizing antibodies (NAbs) and, hence, a promising vaccine candidate. Many broadly NAbs (bNAbs) to E2 recognize the conserved receptor-binding site, but immunization with soluble E2 antigen rarely elicits a potent bNAb response. Here, we show that soluble E2 is highly stable except for the receptor-binding site and variable loops. Thus, despite high sequence conservation, structural flexibility at the receptor-binding site may distract the immune system from eliciting bNAbs that recognize the conformation required for its function on virions. Stabilization of the E2 CD81 receptor-binding site (CD81bs) by structure-based design may improve its performance as a vaccine candidate. Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world’s population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen–deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.