Yuanzi Hua
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuanzi Hua.
Cell | 2009
Owen Pornillos; Barbie K. Ganser-Pornillos; Brian N. Kelly; Yuanzi Hua; Frank G. Whitby; C. David Stout; Wesley I. Sundquist; Christopher P. Hill; Mark Yeager
The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.
Science | 2013
Leopold Kong; Erick Giang; Travis Nieusma; Rameshwar U. Kadam; Kristin E. Cogburn; Yuanzi Hua; Xiaoping Dai; Robyn L. Stanfield; Dennis R. Burton; Andrew B. Ward; Ian A. Wilson; Mansun Law
Deciphering Hepatitis C Hepatitis C virus is a major cause of liver disease and cancer. Two envelope glycoproteins, E1 and E2, form a heterodimer that facilitates infection. The envelope proteins have been difficult to crystallize, hindering vaccine development. Kong et al. (p. 1090) designed an E2 core glycoprotein construct and solved the crystal structure of the glycosylated protein in complex with a broadly neutralizing antibody. The host cell receptor binding site was identified by electron microscopy and mutagenesis. The findings should help in future drug and vaccine design. The structure of a key viral surface protein provides insight for drug and vaccine development. Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.
Nature Structural & Molecular Biology | 2013
Leopold Kong; Jeong Hyun Lee; Katie J. Doores; Charles D. Murin; Jean-Philippe Julien; Ryan McBride; Yan Liu; Andre J. Marozsan; Albert Cupo; Per Johan Klasse; Simon Hoffenberg; Michael J. Caulfield; C. Richter King; Yuanzi Hua; Khoa Le; Reza Khayat; Marc C. Deller; Thomas Clayton; Henry Tien; Ten Feizi; Rogier W. Sanders; James C. Paulson; John P. Moore; Robyn L. Stanfield; Dennis R. Burton; Andrew B. Ward; Ian A. Wilson
A substantial proportion of the broadly neutralizing antibodies (bnAbs) identified in certain HIV-infected donors recognize glycan-dependent epitopes on HIV-1 gp120. Here we elucidate how the bnAb PGT 135 binds its Asn332 glycan–dependent epitope from its 3.1-Å crystal structure with gp120, CD4 and Fab 17b. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield and access the gp120 protein surface. EM reveals that PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. Combined structural studies of PGT 135, PGT 128 and 2G12 show that this Asn332-dependent antigenic region is highly accessible and much more extensive than initially appreciated, which allows for multiple binding modes and varied angles of approach; thereby it represents a supersite of vulnerability for antibody neutralization.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Devin Sok; Marit J. van Gils; Matthias Pauthner; Jean-Philippe Julien; Karen L. Saye-Francisco; Jessica Hsueh; Bryan Briney; Jeong Hyun Lee; Khoa Le; Peter S. Lee; Yuanzi Hua; Michael S. Seaman; John P. Moore; Andrew B. Ward; Ian A. Wilson; Rogier W. Sanders; Dennis R. Burton
Significance Despite the high antigenic diversity of the HIV envelope trimer (Env), broadly neutralizing antibodies (bnAbs) have identified conserved regions that serve as targets for vaccine design. One of these regions is located at the apex of Env and is expressed fully only in the context of the correctly folded trimer. This work describes the isolation of bnAbs that target this region using a recombinant native-like Env trimer as an affinity reagent to sort specific antibody-producing cells. Characterization of these antibodies reveals a highly diverse antibody response against the trimer apex and provides molecular information that will be useful in the design of immunogens to elicit bnAbs to this region of Env. Broadly neutralizing antibodies (bnAbs) targeting the trimer apex of HIV envelope are favored candidates for vaccine design and immunotherapy because of their great neutralization breadth and potency. However, methods of isolating bnAbs against this site have been limited by the quaternary nature of the epitope region. Here we report the use of a recombinant HIV envelope trimer, BG505 SOSIP.664 gp140, as an affinity reagent to isolate quaternary-dependent bnAbs from the peripheral blood mononuclear cells of a chronically infected donor. The newly isolated bnAbs, named “PGDM1400–1412,” show a wide range of neutralization breadth and potency. One of these variants, PGDM1400, is exceptionally broad and potent with cross-clade neutralization coverage of 83% at a median IC50 of 0.003 µg/mL. Overall, our results highlight the utility of BG505 SOSIP.664 gp140 as a tool for the isolation of quaternary-dependent antibodies and reveal a mosaic of antibody responses against the trimer apex within a clonal family.
Immunity | 2015
Fernando Garces; Jeong Hyun Lee; Natalia de Val; Alba Torrents de la Peña; Leopold Kong; Cristina Puchades; Yuanzi Hua; Robyn L. Stanfield; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson
The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.
Cell | 2014
Fernando Garces; Devin Sok; Leopold Kong; Ryan McBride; Helen J. Kim; Karen F. Saye-Francisco; Jean-Philippe Julien; Yuanzi Hua; Albert Cupo; John P. Moore; James C. Paulson; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson
The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans.
Journal of Molecular Biology | 2010
Owen Pornillos; Barbie K. Ganser-Pornillos; Sankaran Banumathi; Yuanzi Hua; Mark Yeager
The human immunodeficiency virus type 1 capsid is modeled as a fullerene cone that is composed of approximately 250 hexamers and 12 pentamers of the viral CA protein. Structures of CA hexamers have been difficult to obtain because the hexamer-stabilizing interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Here, we describe a two-step biochemical strategy to obtain soluble CA hexamers for crystallization. First, the hexamer was stabilized by engineering disulfide cross-links (either A14C/E45C or A42C/T54C) between the N-terminal domains of adjacent subunits. Second, the cross-linked hexamers were prevented from polymerizing further into hyperstable capsid-like structures by mutations (W184A and M185A) that interfered with dimeric association between the C-terminal domains that link adjacent hexamers. The structures of two different cross-linked CA hexamers were nearly identical, and we combined the non-mutated portions of the structures to generate an atomic resolution model for the native hexamer. This hybrid approach for structure determination should be applicable to other viral capsomers and protein-protein complexes in general.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jean-Philippe Julien; Jeong Hyun Lee; Gabriel Ozorowski; Yuanzi Hua; Alba Torrents de la Peña; Steven W. de Taeye; Travis Nieusma; Albert Cupo; Anila Yasmeen; Michael Golabek; Pavel Pugach; Per Johan Klasse; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson
Significance A successful HIV-1 vaccine should generate an immune response capable of neutralizing the enormous diversity of globally circulating viruses. Here, we report the discovery and characterization of two clade C recombinant envelope glycoprotein trimers with native-like structural and antigenic properties, including epitopes for all known classes of broadly neutralizing antibodies (bnAbs). Together with previously described trimers from other clades, these two new trimers will aid in immunization strategies designed to induce bnAbs to HIV-1. A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1.
Immunity | 2016
Leopold Kong; Bin Ju; Yajing Chen; Linling He; Li Ren; Jiandong Liu; Kunxue Hong; Bin Su; Zheng Wang; Gabriel Ozorowski; Xiaolin Ji; Yuanzi Hua; Yanli Chen; Marc C. Deller; Yanling Hao; Yi Feng; Fernando Garces; Richard Wilson; Kaifan Dai; Sijy O’Dell; Krisha McKee; John R. Mascola; Andrew B. Ward; Richard T. Wyatt; Yuxing Li; Ian A. Wilson; Jiang Zhu; Yiming Shao
VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.
Acta Crystallographica Section D-biological Crystallography | 2015
Leopold Kong; Alba Torrents de la Peña; Marc C. Deller; Fernando Garces; Kwinten Sliepen; Yuanzi Hua; Robyn L. Stanfield; Rogier W. Sanders; Ian A. Wilson
The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.