Fernando Sampedro
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Sampedro.
PLOS ONE | 2016
Michaela P. Trudeau; Harsha Verma; Fernando Sampedro; P. E. Urriola; G. C. Shurson; Jessica McKelvey; Suresh D. Pillai; Sagar M. Goyal
Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120–145°C for up to 30 min or irradiated at 0–50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability.
PLOS ONE | 2017
Michaela P. Trudeau; Harsha Verma; Fernando Sampedro; P. E. Urriola; G. C. Shurson; Sagar M. Goyal
Porcine Epidemic Diarrhea Virus (PEDV), Porcine Delta Corona Virus (PDCoV), and Transmissible Gastroenteritis Virus (TGEV) are major threats to swine health and contaminated feed plays a role in virus transmission. The objective of our study was to characterize inactivation of PEDV, PDCoV, and TGEV in various feed ingredient matrices. Samples of complete feed, spray dried porcine plasma, meat meal, meat and bone meal, blood meal, corn, soybean meal, and corn dried distillers grains with solubles were weighed (5 g/sample) into scintillation vials and inoculated with 1 mL of PEDV, PDCoV, or TGEV. Samples were incubated at room temperature for up to 56 days. Aliquots were removed at various time points followed by preparing serial 10-fold dilutions and inoculating in cell cultures to determine the amount of surviving virus. Inactivation kinetics were determined using the Weibull model, which estimates a delta value indicating the time necessary to reduce virus concentration by 1 log. Delta values of various ingredients were compared and analyzed as to their nutrient composition. Soybean meal had the greatest delta value (7.50 days) for PEDV (P < 0.06) as compared with all other ingredients. High delta values (P < 0.001) were observed in soybean meal for PDCoV (42.04 days) and TGEV (42.00 days). There was a moderate correlation between moisture content and the delta value for PDCoV (r = 0.49, P = 0.01) and TGEV (r = 0.41, P = 0.02). There was also a moderate negative correlation between TGEV survival and ether extract content (r = -0.51, P = 0.01). In conclusion, these results indicate that the first log reduction of PDCoV and TGEV takes the greatest amount of time in soybean meal. In addition to this, moisture and ether content appear to be an important determinant of virus survival in feed ingredients.
Avian Diseases | 2012
Sasidhar Malladi; J. Todd Weaver; Timothy J. Goldsmith; William H. Hueston; Shauna Voss; Janel Funk; Christina Der; Kathe E. Bjork; Timothy L. Clouse; Morgan Hennessey; Fernando Sampedro; Brendan Lee; David A. Halvorson
SUMMARY. Emergency response during a highly pathogenic avian influenza (HPAI) outbreak may involve quarantine and movement controls for poultry products such as eggs. However, such disease control measures may disrupt business continuity and impact food security, since egg production facilities often do not have sufficient capacity to store eggs for prolonged periods. We propose the incorporation of a holding time before egg movement in conjunction with targeted active surveillance as a novel approach to move eggs from flocks within a control area with a low likelihood of them being contaminated with HPAI virus. Holding time reduces the likelihood of HPAI-contaminated eggs being moved from a farm before HPAI infection is detected in the flock. We used a stochastic disease transmission model to estimate the HPAI disease prevalence, disease mortality, and fraction of internally contaminated eggs at various time points postinfection of a commercial table-egg layer flock. The transmission model results were then used in a simulation model of a targeted matrix gene real-time reverse transcriptase (RRT)-PCR testing based surveillance protocol to estimate the time to detection and the number of contaminated eggs moved under different holding times. Our simulation results indicate a significant reduction in the number of internally contaminated eggs moved from an HPAI-infected undetected flock with each additional day of holding time. Incorporation of a holding time and the use of targeted surveillance have been adopted by the U.S. Department of Agriculture in their Draft Secure Egg Supply Plan for movement of egg industry products during an HPAI outbreak.
Archive | 2016
Gilbert Patterson; Alicia Hofelich Mohr; Tim Snider; Thomas Lindsay; Peter R. Davies; Timothy J. Goldsmith; Fernando Sampedro
The Data.csv file contains the raw survey responses (location information collected by Qualtrics has been removed). Information about the variables and value labels can be found in the DataDictionary.txt file. The data can be read into the Analysis_Code.R file to perform analysis described in the paper and to create a static version of the Movements.html graph. Survey.pdf contains the survey questions with relevant skip and display logic.
Journal of Food Protection | 2014
C. Cherry; A. J. Hofelich Mohr; Thomas Lindsay; Francisco Diez-Gonzalez; W. Hueston; Fernando Sampedro
Risk analysis is increasingly promoted as a tool to support science-based decisions regarding food safety. An online survey comprising 45 questions was used to gather information on the implementation of food safety risk analysis within the Latin American and Caribbean regions. Professionals working in food safety in academia, government, and private sectors in Latin American and Caribbean countries were contacted by email and surveyed to assess their individual knowledge of risk analysis and perceptions of its implementation in the region. From a total of 279 participants, 97% reported a familiarity with risk analysis concepts; however, fewer than 25% were able to correctly identify its key principles. The reported implementation of risk analysis among the different professional sectors was relatively low (46%). Participants from industries in countries with a long history of trade with the United States and the European Union, such as Mexico, Brazil, and Chile, reported perceptions of a higher degree of risk analysis implementation (56, 50, and 20%, respectively) than those from the rest of the countries, suggesting that commerce may be a driver for achieving higher food safety standards. Disagreement among respondents on the extent of the use of risk analysis in national food safety regulations was common, illustrating a systematic lack of understanding of the current regulatory status of the country. The results of this survey can be used to target further risk analysis training on selected sectors and countries.
Frontiers in Veterinary Science | 2017
Timothy J. Goldsmith; Marie R. Culhane; Fernando Sampedro; Carol J. Cardona
Animal diseases such as foot-and-mouth disease (FMD) have the potential to severely impact food animal production systems. Paradoxically, the collateral damage associated with the outbreak response may create a larger threat to the food supply, social stability, and economic viability of rural communities than the disease itself. When FMD occurs in domestic animals, most developed countries will implement strict movement controls in the area surrounding the infected farm(s). Historically, stopping all animal movements has been considered one of the most effective ways to control FMD and stop disease spread. However, stopping all movements in an area comes at a cost, as there are often uninfected herds and flocks within the control area. The inability to harvest uninfected animals and move their products to processing interrupts the food supply chain and has the potential to result in an enormous waste of safe, nutritious animal products, and create animal welfare situations. In addition, these adverse effects may negatively impact agriculture businesses and the related economy. Effective disease control measures and the security of the food supply thus require a balanced approach based on science and practicality. Evaluating the risks associated with the movement of live animals and products before an outbreak happens provides valuable insights for risk management plans. These plans can optimize animal and product movements while preventing disease spread. Food security benefits from emergency response plans that both control the disease and keep our food system functional. Therefore, emergency response plans must aim to minimize the unintended negative consequence to farmers, food processors, rural communities, and ultimately consumers.
Journal of Animal Science | 2016
Michaela P. Trudeau; Harsha Verma; Fernando Sampedro; P. E. Urriola; G. C. Shurson; Sagar M. Goyal
Abstract Porcine epidemic diarrhea virus (PEDV), porcine delta corona virus (PDCoV), and transmissible gastroenteritis (TGEV) are major threats to swine production. Investigations of recent outbreaks confirmed that contaminated feed plays a role in virus transmission. This risk makes it necessary to evaluate the survival of such viruses in various feed ingredients. The objective of our experiment was to characterize the inactivation of PEDV, PDCoV, and TGEV in various feed and ingredient matrices. To determine differences in virus survival, 5-g samples of complete feed, spray-dried porcine plasma, meat meal, meat and bone meal, blood meal, corn, soybean meal, and low, medium, and high oil dried distillers grains with solubles were weighed into separate scintillation vials. These samples were inoculated with 1 mL of PEDV, PDCoV, or TGEV and incubated at room temperature for up to 56 d. At each time point, surviving virus was eluted and the supernatant was inoculated into vero-81 cells for PEDV, or swine testicular cells for PDCoV and TGEV. Cells were observed daily for 10 d for cytopathic effects, and this information was used to calculate a median tissue culture infectious dose (TCID50) using the Karber method. Inactivation kinetics were determined using the Weibull model. A delta value was estimated from the model, indicating the time necessary to reduce virus concentration by 1 log. This delta value was then compared across ingredients using the mixed procedure of SAS, and correlations between ingredient proximate analysis data and delta values were determined. Results showed that soybean meal had the greatest delta value (7.50 d) for PEDV compared with other ingredients (P < 0.06). Likewise, PDCoV (42.04 d) and TGEV (42.00 d) delta values were highest in soybean meal (P < 0.001). There was a moderate positive correlation between moisture and the delta value for PDCoV (r = 0.49, P = 0.01) and TGEV (r = 0.41, P = 0.02). There was also a moderate negative correlation between lipid content and the delta value for TGEV (r = −0.51, P = 0.01), suggesting that TGEV is less stable in ingredients with greater lipid content compared with ingredients with less lipid content. In conclusion, these results indicate that the first log reduction of PDCoV and TGEV takes the greatest amount of time in soybean meal and it appears to be the result of greater moisture content.
Frontiers in Veterinary Science | 2016
Gilbert Patterson; Alicia Hofelich Mohr; Tim Snider; Thomas Lindsay; Peter R. Davies; Timothy J. Goldsmith; Fernando Sampedro
In the event of a foot-and-mouth disease (FMD) outbreak in the United States, local, state, and federal authorities will implement a foreign animal disease emergency response plan restricting the pork supply chain movements and likely disrupting the continuity of the swine industry business. To minimize disruptions of the food supply while providing an effective response in an outbreak, it is necessary to have proactive measures in place to ensure minimal disease spread and maximum continuation of business. Therefore, it is critical to identify candidate movements for proactive risk assessments: those that are both most likely to contribute to disease spread and most necessary for business continuity. To do this, experts from production, harvest, retail, and allied pork industries assessed 30 common pork supply movements for risk of disease spread and industry criticality. The highest priority movements for conducting a risk assessment included the movement of weaned pigs originating from multiple sow farm sources to an off-site nursery or wean to finish facility, the movement of employees or commercial crews, the movement of vaccination crews, the movement of dedicated livestock hauling trucks, and the movement of commercial crews such as manure haulers and feed trucks onto, off, or between sites. These critical movements, along with several others identified in this study, will provide an initial guide for prioritization of risk management efforts and resources to be better prepared in the event of a FMD outbreak in the United States. By specifically and proactively targeting movements that experts agree are likely to spread the disease and are critical to the continuity of business operations, potentially catastrophic consequences in the event of an outbreak can be limited.
Archive | 2011
Javier Collado; Antonio Falcó; D. Rodrigo; Fernando Sampedro; M. Consuelo Pina; Antonio Martínez
Este es el documento que se ha publicado a texto completo en http://www.intechopen.com/books/applications-of-monte-carlo-method-in-science-andengineering/ application-of-monte-carlo-simulation-in-industrial-microbiological-exposure-assessment
Archive | 2005
Antonio López; D. Rodrigo; Pablo Fernández; M.C. Pina-Pérez; Fernando Sampedro