Filippo Pizzocchero
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Filippo Pizzocchero.
Nature Nanotechnology | 2015
Xu Cui; Gwan Hyoung Lee; Young Duck Kim; Ghidewon Arefe; Pinshane Y. Huang; Chulho Lee; Daniel Chenet; Xiangwei Zhang; Lei Wang; Fan Ye; Filippo Pizzocchero; Bjarke Sørensen Jessen; Kenji Watanabe; Takashi Taniguchi; David A. Muller; Tony Low; Philip Kim; James Hone
Atomically thin two-dimensional semiconductors such as MoS2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000 cm(2) V(-1) s(-1) for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS2.
Nano Letters | 2011
Tim Booth; Filippo Pizzocchero; Henrik Andersen; Thomas Willum Hansen; Jakob Birkedal Wagner; Joerg R. Jinschek; Rafal E. Dunin-Borkowski; Ole Hansen; Peter Bøggild
We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600-850 K, we observe crystallographically oriented channelling with rates in the range 0.01-1 nm/s and calculate an activation energy of 0.557 ± 0.016 eV. We present a discrete statistical model for this process and discuss the implications for accurate nanoscale patterning of nanoscale systems.
Nature Communications | 2016
Filippo Pizzocchero; Lene Gammelgaard; Bjarke Sørensen Jessen; José M. Caridad; Lei Wang; James Hone; Peter Bøggild; Tim Booth
The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.
Nano Research | 2014
Alberto Cagliani; David Mackenzie; Lisa Katharina Tschammer; Filippo Pizzocchero; Kristoffer Almdal; Peter Bøggild
AbstractChemical vapor deposited (CVD) graphene is nanopatterned using a spherical block copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extremely high densities of adsorption sites for sensing applications.
Scientific Reports | 2015
Jonas Christian Due Buron; Filippo Pizzocchero; Peter Uhd Jepsen; Dirch Hjorth Petersen; José M. Caridad; Bjarke Sørensen Jessen; Tim Booth; Peter Bøggild
Carrier mobility and chemical doping level are essential figures of merit for graphene, and large-scale characterization of these properties and their uniformity is a prerequisite for commercialization of graphene for electronics and electrodes. However, existing mapping techniques cannot directly assess these vital parameters in a non-destructive way. By deconvoluting carrier mobility and density from non-contact terahertz spectroscopic measurements of conductance in graphene samples with terahertz-transparent backgates, we are able to present maps of the spatial variation of both quantities over large areas. The demonstrated non-contact approach provides a drastically more efficient alternative to measurements in contacted devices, with potential for aggressive scaling towards wafers/minute. The observed linear relation between conductance and carrier density in chemical vapour deposition graphene indicates dominance by charged scatterers. Unexpectedly, significant variations in mobility rather than doping are the cause of large conductance inhomogeneities, highlighting the importance of statistical approaches when assessing large-area graphene transport properties.
Nano Letters | 2014
Jonas Christian Due Buron; Filippo Pizzocchero; Bjarke Sørensen Jessen; Tim Booth; Peter Folmer Nielsen; Ole Hansen; Michael Hilke; Eric Whiteway; Peter Uhd Jepsen; Peter Bøggild; Dirch Hjorth Petersen
The electrical performance of graphene synthesized by chemical vapor deposition and transferred to insulating surfaces may be compromised by extended defects, including for instance grain boundaries, cracks, wrinkles, and tears. In this study, we experimentally investigate and compare the nano- and microscale electrical continuity of single layer graphene grown on centimeter-sized single crystal copper with that of previously studied graphene films, grown on commercially available copper foil, after transfer to SiO2 surfaces. The electrical continuity of the graphene films is analyzed using two noninvasive conductance characterization methods: ultrabroadband terahertz time-domain spectroscopy and micro four-point probe, which probe the electrical properties of the graphene film on different length scales, 100 nm and 10 μm, respectively. Ultrabroadband terahertz time-domain spectroscopy allows for measurement of the complex conductance response in the frequency range 1-15 terahertz, covering the entire intraband conductance spectrum, and reveals that the conductance response for the graphene grown on single crystalline copper intimately follows the Drude model for a barrier-free conductor. In contrast, the graphene grown on commercial copper foil shows a distinctly non-Drude conductance spectrum that is better described by the Drude-Smith model, which incorporates the effect of preferential carrier backscattering associated with extended, electronic barriers with a typical separation on the order of 100 nm. Micro four-point probe resistance values measured on graphene grown on single crystalline copper in two different voltage-current configurations show close agreement with the expected distributions for a continuous 2D conductor, in contrast with previous observations on graphene grown on commercial copper foil. The terahertz and micro four-point probe conductance values of the graphene grown on single crystalline copper shows a close to unity correlation, in contrast with those of the graphene grown on commercial copper foil, which we explain by the absence of extended defects on the microscale in CVD graphene grown on single crystalline copper. The presented results demonstrate that the graphene grown on single crystal copper is electrically continuous on the nanoscopic, microscopic, as well as intermediate length scales.
Journal of Physics D | 2015
Line Koefoed; Mikkel Kongsfelt; Søren Ulstrup; Antonija Grubišić Čabo; Andrew Cassidy; Patrick Rebsdorf Whelan; Marco Bianchi; Maciej Dendzik; Filippo Pizzocchero; Bjarke Jørgensen; Peter Bøggild; Liv Hornekær; Philip Hofmann; Steen Uttrup Pedersen; Kim Daasbjerg
High-quality growth of graphene and subsequent reliable transfer to insulating substrates are needed for various technological applications, such as flexible screens and high speed electronics. In this paper, we present a new electrochemical method for the transfer of large-area, high-quality single crystalline graphene from Ir(1 1 1) to Si/SiO2 under ambient conditions. The method is based on intercalation of tetraoctylammonium ions between the graphene layer and the Ir surface. This simple technique allows transfer of graphene single crystals having the same size as the substrate they are grown on (diameter ≈7 mm). In addition, the substrate can be reused for further growth cycles. A detailed Raman map analysis of the transferred graphene reveals straight lines, in which the Raman peaks characteristic for graphene are shifted. These lines originate from scratches in the Ir(1 1 1) crystal introduced by the polishing procedure. Furthermore, areas with numerous wrinkles exist inbetween these lines, forming a network across the entire graphene crystal. Hence, the initial characteristics and imprints left on the sheet of graphene in terms of strain and wrinkles from the growth process remain after transfer.
Journal of Applied Physics | 2013
Filippo Pizzocchero; Peter Bøggild; Tim Booth
We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035 °C in an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide channels, which are aligned with the intersections of the (100) surface of the wafer and the {110} planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission electron microscopy of focused ion beam fabricated lammelas and trenches in the structure to elucidate the process of their formation.
Applied Physics Letters | 2018
Paolo Pedrinazzi; José M. Caridad; David Mackenzie; Filippo Pizzocchero; Lene Gammelgaard; Bjarke Sørensen Jessen; Roman Sordan; Tim Booth; Peter Bøggild
We show that graphene supported on a hydrophobic and flat polymer surface results in flakes with extremely low doping and strain as assessed by their Raman spectroscopic characteristics. We exemplify this technique by micromechanical exfoliation of graphene on flat poly(methylmethacrylate) layers and demonstrate Raman peak intensity ratios I(2D)/I(G) approaching 10, similar to pristine freestanding graphene. We verify that these features are not an artifact of optical interference effects occurring at the substrate: they are similarly observed when varying the substrate thickness and are maintained when the environment of the graphene flake is completely changed, by encapsulating preselected flakes between hexagonal boron nitride layers. The exfoliation of clean, pristine graphene layers directly on flat polymer substrates enables high performance, supported, and non-encapsulated graphene devices for flexible and transparent optoelectronic studies. We additionally show that the access to a clean and supported graphene source leads to high-quality van der Waals heterostructures and devices with reproducible carrier mobilities exceeding 50 000 cm2 V−1 s−1 at room temperature.
Carbon | 2015
Filippo Pizzocchero; Bjarke Sørensen Jessen; Patrick Rebsdorf Whelan; Natalie Kostesha; Sunwoo Lee; Jonas Christian Due Buron; Irina Petrushina; Martin Birkelund Larsen; Paul Greenwood; Wu Joon Cha; K. B. K. Teo; Peter Uhd Jepsen; James Hone; Peter Bøggild; Tim Booth