Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian Zirkel is active.

Publication


Featured researches published by Florian Zirkel.


Mbio | 2011

An Insect Nidovirus Emerging from a Primary Tropical Rainforest

Florian Zirkel; Andreas Kurth; Phenix-Lan Quan; Thomas Briese; Heinz Ellerbrok; Georg Pauli; Fabian H. Leendertz; W. Ian Lipkin; John Ziebuhr; Christian Drosten; Sandra Junglen

ABSTRACT Tropical rainforests show the highest level of terrestrial biodiversity and may be an important contributor to microbial diversity. Exploitation of these ecosystems may foster the emergence of novel pathogens. We report the discovery of the first insect-associated nidovirus, tentatively named Cavally virus (CAVV). CAVV was found with a prevalence of 9.3% during a survey of mosquito-associated viruses along an anthropogenic disturbance gradient in Côte d’Ivoire. Analysis of habitat-specific virus diversity and ancestral state reconstruction demonstrated an origin of CAVV in a pristine rainforest with subsequent spread into agriculture and human settlements. Virus extension from the forest was associated with a decrease in virus diversity (P < 0.01) and an increase in virus prevalence (P < 0.00001). CAVV is an enveloped virus with large surface projections. The RNA genome comprises 20,108 nucleotides with seven major open reading frames (ORFs). ORF1a and -1b encode two large proteins that share essential features with phylogenetically higher representatives of the order Nidovirales, including the families Coronavirinae and Torovirinae, but also with families in a basal phylogenetic relationship, including the families Roniviridae and Arteriviridae. Genetic markers uniquely conserved in nidoviruses, such as an endoribonuclease- and helicase-associated zinc-binding domain, are conserved in CAVV. ORF2a and -2b are predicted to code for structural proteins S and N, respectively, while ORF3a and -3b encode proteins with membrane-spanning regions. CAVV produces three subgenomic mRNAs with 5′ leader sequences (of different lengths) derived from the 5′ end of the genome. This novel cluster of mosquito-associated nidoviruses is likely to represent a novel family within the order Nidovirales. IMPORTANCE Knowledge of microbial diversity in tropical rainforests is sparse, and factors driving the emergence of novel pathogens are poorly understood. We discovered and mapped the spread and genetic evolution of a novel mosquito nidovirus from a pristine rainforest to human settlements. Notably, virus diversity decreased and prevalence increased during the process of spreading into disturbed habitats. The novel virus, tentatively termed Cavally virus, contains genetic features common to members of the order Nidovirales (families Coronaviridae, Arteriviridae, and Roniviridae), including conservation of the replicase machinery and expression of subgenomic RNA messages, has a basal phylogenetic relationship to the family Coronaviridae, and clearly differs from the established nidovirus families. Inclusion of this putative novel family in the nidovirus phylogeny suggests that nidoviruses may have evolved from arthropods. Knowledge of microbial diversity in tropical rainforests is sparse, and factors driving the emergence of novel pathogens are poorly understood. We discovered and mapped the spread and genetic evolution of a novel mosquito nidovirus from a pristine rainforest to human settlements. Notably, virus diversity decreased and prevalence increased during the process of spreading into disturbed habitats. The novel virus, tentatively termed Cavally virus, contains genetic features common to members of the order Nidovirales (families Coronaviridae, Arteriviridae, and Roniviridae), including conservation of the replicase machinery and expression of subgenomic RNA messages, has a basal phylogenetic relationship to the family Coronaviridae, and clearly differs from the established nidovirus families. Inclusion of this putative novel family in the nidovirus phylogeny suggests that nidoviruses may have evolved from arthropods.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family

Marco Marklewitz; Florian Zirkel; Andreas Kurth; Christian Drosten; Sandra Junglen

Significance Knowledge of the origin and evolution of viruses provides important insight into virus emergence involving the acquisition of genes necessary for the infection of new host species or the development of pathogenicity. The family Bunyaviridae contains important arthropod-borne pathogens of humans, animals, and plants. In this study, we provide a comprehensive characterization of two novel lineages of insect-specific bunyaviruses that are in basal phylogenetic relationship to the rodent-borne hantaviruses, the only genus within the Bunyaviridae that is not transmitted by arthropod vectors. These data, together with ancestral state reconstruction of bunyavirus hosts for major virus lineage bifurcations, suggest that the vertebrate-infecting viruses evolved from arthropod-specific progenitors. The evolutionary origins of arboviruses are unknown because their typical dual host tropism is paraphyletic within viral families. Here we studied one of the most diversified and medically relevant RNA virus families, the Bunyaviridae, in which four of five established genera are transmitted by arthropods. We define two cardinally novel bunyavirus groups based on live isolation of 26 viral strains from mosquitoes (Jonchet virus [JONV], eight strains; Ferak virus [FERV], 18 strains). Both viruses were incapable of replicating at vertebrate-typical temperatures but replicated efficiently in insect cells. Replication involved formation of virion-sense RNA (vRNA) and mRNA, including cap-snatching activity. SDS/PAGE, mass spectrometry, and Edman degradation identified translation products corresponding to virion-associated RNA-dependent RNA polymerase protein (RdRp), glycoprotein precursor protein, glycoproteins Gn and Gc, as well as putative nonstructural proteins NSs and NSm. Distinct virion morphologies suggested ancient evolutionary divergence, with bunyavirus-typical morphology for FERV (spheres of 60–120 nm) as opposed to an unusual bimorphology for JONV (tubular virions of 60 × 600 nm and spheres of 80 nm). Both viruses were genetically equidistant from all other bunyaviruses, showing <15% amino acid identity in the RdRp palm domain. Both had different and unique conserved genome termini, as in separate bunyavirus genera. JONV and FERV define two novel sister taxons to the superclade of orthobunyaviruses, tospoviruses, and hantaviruses. Phylogenetic ancestral state reconstruction with probabilistic hypothesis testing suggested ancestral associations with arthropods at deep nodes throughout the bunyavirus tree. Our findings suggest an arthropod origin of bunyaviruses.


Archives of Virology | 2012

Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses

Chris Lauber; John Ziebuhr; Sandra Junglen; Christian Drosten; Florian Zirkel; Phan Thi Nga; Kouichi Morita; Eric J. Snijder; Alexander E. Gorbalenya

Recently, two independent surveillance studies in Côte d’Ivoire and Vietnam, respectively, led to the discovery of two mosquito-borne viruses, Cavally virus and Nam Dinh virus, with genome and proteome properties typical for viruses of the order Nidovirales. Using a state-of-the-art approach, we show that the two insect nidoviruses are (i) sufficiently different from other nidoviruses to represent a new virus family, and (ii) related to each other closely enough to be placed in the same virus species. We propose to name this new family Mesoniviridae. Meso is derived from the Greek word “mesos” (in English “in the middle”) and refers to the distinctive genome size of these insect nidoviruses, which is intermediate between that of the families Arteriviridae and Coronaviridae, while ni is an abbreviation for “nido”. A taxonomic proposal to establish the new family Mesoniviridae, genus Alphamesonivirus, and species Alphamesonivirus 1 has been approved for consideration by the Executive Committee of the ICTV.


Journal of Virology | 2008

Interspecies Transmission of Simian Foamy Virus in a Natural Predator-Prey System

Fabian H. Leendertz; Florian Zirkel; Emmanuel Couacy-Hymann; Heinz Ellerbrok; Vladimir A. Morozov; Georg Pauli; Claudia Hedemann; Pierre Formenty; Siv Aina Jensen; Christophe Boesch; Sandra Junglen

ABSTRACT Simian foamy viruses (SFV) are ancient retroviruses of primates and have coevolved with their host species for as many as 30 million years. Although humans are not naturally infected with foamy virus, infection is occasionally acquired through interspecies transmission from nonhuman primates. We show that interspecies transmissions occur in a natural hunter-prey system, i.e., between wild chimpanzees and colobus monkeys, both of which harbor their own species-specific strains of SFV. Chimpanzees infected with chimpanzee SFV strains were shown to be coinfected with SFV from colobus monkeys, indicating that apes are susceptible to SFV superinfection, including highly divergent strains from other primate species.


Emerging Infectious Diseases | 2015

Acute Middle East Respiratory Syndrome Coronavirus infection in livestock dromedaries, Dubai, 2014

Ulrich Wernery; Victor Max Corman; Emily Y. M. Wong; Alan K. L. Tsang; Doreen Muth; Susanna K. P. Lau; Kamal Khazanehdari; Florian Zirkel; Mansoor Ali; P. Nagy; Jutka Juhasz; Renate Wernery; Sunitha Joseph; Ginu Syriac; Shyna K. Elizabeth; Nissy Annie Georgy Patteril; Patrick C. Y. Woo; Christian Drosten

Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother–calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk.


Viruses | 2014

Genetic Characterization of Goutanap Virus, a Novel Virus Related to Negeviruses, Cileviruses and Higreviruses

René Kallies; Anne Kopp; Florian Zirkel; Alejandro Estrada; Thomas R. Gillespie; Christian Drosten; Sandra Junglen

Pools of mosquitoes collected in Côte d’Ivoire and Mexico were tested for cytopathic effects on the mosquito cell line C6/36. Seven pools induced strong cytopathic effects after one to five days post infection and were further investigated by deep sequencing. The genomes of six virus isolates from Côte d’Ivoire showed pairwise nucleotide identities of ~99% among each other and of 56%–60% to Dezidougou virus and Wallerfield virus, two insect-specific viruses belonging to the proposed new taxon Negevirus. The novel virus was tentatively named Goutanap virus. The isolate derived from the Mexican mosquitoes showed 95% pairwise identity to Piura virus and was suggested to be a strain of Piura virus, named C6.7-MX-2008. Phylogenetic inferences based on a concatenated alignment of the methyltransferase, helicase, and RNA-dependent RNA polymerase domains showed that the new taxon Negevirus formed two monophyletic clades, named Nelorpivirus and Sandewavirus after the viruses grouping in these clades. Branch lengths separating these clades were equivalent to those of the related genera Cilevirus, Higrevirus and Blunervirus, as well as to those within the family Virgaviridae. Genetic distances and phylogenetic analyses suggest that Nelorpivirus and Sandewavirus might form taxonomic groups on genus level that may define alone or together with Cilevirus, Higrevirus and Blunervirus a viral family.


Archives of Virology | 2018

Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018

Piet Maes; S. V. Alkhovsky; Yīmíng Bào; Martin Beer; Monica Birkhead; Thomas Briese; Michael J. Buchmeier; Charles H. Calisher; Rémi N. Charrel; Il Ryong Choi; Christopher S. Clegg; Juan Carlos de la Torre; Eric Delwart; Joseph L. DeRisi; Patrick L. Di Bello; Francesco Di Serio; Michele Digiaro; Valerian V. Dolja; Christian Drosten; Tobiasz Druciarek; Jiang Du; Hideki Ebihara; Toufic Elbeaino; Rose C. Gergerich; Amethyst Gillis; Jean-Paul J. Gonzalez; Anne-Lise Haenni; Jussi Hepojoki; U. Hetzel; Thiện Hồ

In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Journal of General Virology | 2017

Discovery of a novel alphavirus related to Eilat virus

Kyra Hermanns; Florian Zirkel; Anne Kopp; Marco Marklewitz; Innocent B. Rwego; Alejandro Estrada; Thomas R. Gillespie; Christian Drosten; Sandra Junglen

Most alphaviruses are transmitted by arthropods and infect vertebrate hosts. An exception is Eilat virus (EILV), the only described alphavirus with a host range restricted to insects. We established a new generic reverse transcription PCR assay for alphaviruses and tested 8860 tropical mosquitoes. We detected a novel alphavirus, tentatively named Taï Forest alphavirus (TALV), in Culex decens mosquitoes collected in Ivory Coast. The full genome was sequenced, and closest similarity was found to EILV. Pairwise amino acid identities to EILV ranged between 67 and 88 % for the corresponding proteins, suggesting that TALV defines a proposed new alphavirus species. Phylogenetic analyses placed TALV as a sister species to EILV with a basal relationship to the western equine encephalitis virus complex. In comparison to the highly abundant insect-specific flaviviruses, insect-specific alphaviruses seem to be rare. This new PCR assay can detect novel alphaviruses and may facilitate the identification of additional new alphaviruses.


Journal of Virology | 2014

Characterization of an Alphamesonivirus 3C-Like Protease Defines a Special Group of Nidovirus Main Proteases

Sandra Blanck; Anne Stinn; Lali Tsiklauri; Florian Zirkel; Sandra Junglen; John Ziebuhr

ABSTRACT Cavally virus (CavV) and related viruses in the family Mesoniviridae diverged profoundly from other nidovirus lineages but largely retained the characteristic set of replicative enzymes conserved in the Coronaviridae and Roniviridae. The expression of these enzymes in virus-infected cells requires the extensive proteolytic processing of two large replicase polyproteins, pp1a and pp1ab, by the viral 3C-like protease (3CLpro). Here, we show that CavV 3CLpro autoproteolytic cleavage occurs at two N-terminal (N1 and N2) and one C-terminal (C1) processing site(s). The mature form of 3CLpro was revealed to be a 314-residue protein produced by cleavage at FKNK1386|SAAS (N2) and YYNQ1700|SATI (C1). Site-directed mutagenesis data suggest that the mesonivirus 3CLpro employs a catalytic Cys-His dyad comprised of CavV pp1a/pp1ab residues Cys-1539 and His-1434. The study further suggests that mesonivirus 3CLpro substrate specificities differ from those of related nidovirus proteases. The presence of Gln (or Glu) at the P1 position was not required for cleavage, although residues that control Gln/Glu specificity in related viral proteases are retained in the CavV 3CLpro sequence. Asn at the P2 position was identified as a key determinant for mesonivirus 3CLpro substrate specificity. Other positions, including P4 and P1′, each are occupied by structurally related amino acids, indicating a supportive role in substrate binding. Together, the data identify a new subgroup of nidovirus main proteases and support previous conclusions on phylogenetic relationships between the main nidovirus lineages. IMPORTANCE Mesoniviruses have been suggested to provide an evolutionary link between nidovirus lineages with small (13 to 16 kb) and large (26 to 32 kb) RNA genome sizes, and it has been proposed that a specific set of enzymes, including a proofreading exoribonuclease and other replicase gene-encoded proteins, play a key role in the major genome expansion leading to the currently known lineages of large nidoviruses. Despite their smaller genome size (20 kb), mesoniviruses retained most of the replicative domains conserved in large nidoviruses; thus, they are considered interesting models for studying possible key events in the evolution of RNA genomes of exceptional size and complexity. Our study provides the first characterization of a mesonivirus replicase gene-encoded nonstructural protein. The data confirm and extend previous phylogenetic studies of mesoniviruses and related viruses and pave the way for studies into the formation of the mesonivirus replication complex and functional and structural studies of its functional subunits.


Emerging Infectious Diseases | 2015

No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d'Ivoire and Ghana

Sandra Junglen; Marco Marklewitz; Florian Zirkel; Robert Wollny; Benjamin Meyer; Hanna Heidemann; Sonja Metzger; Augustina Annan; Dickson Dei; Fabian H. Leendertz; Samuel Oppong; Christian Drosten

A recent report suggested that 2 novel bunyaviruses discovered in insects in Côte d’Ivoire caused lethal disease in swine in South Korea. We conducted cell culture studies and tested serum from pigs exposed to mosquitoes in Côte d’Ivoire and Ghana and found no evidence for infection in pigs.

Collaboration


Dive into the Florian Zirkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge