Florianne Monnet-Tschudi
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florianne Monnet-Tschudi.
Environmental Health Perspectives | 2007
Sandra Coecke; Alan M. Goldberg; Sandra Allen; Leonora Buzanska; Gemma Calamandrei; Kevin M. Crofton; Lars Hareng; Thomas Hartung; Holger Knaut; Paul Honegger; Miriam Jacobs; Pamela J. Lein; Abby A. Li; William R. Mundy; D.E. Owen; Steffen Schneider; Ellen K. Silbergeld; Torsten Reum; Tomas Trnovec; Florianne Monnet-Tschudi; Anna Bal-Price
This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19–21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work.
The EMBO Journal | 2002
Pascal Béguin; Gilles Crambert; Florianne Monnet-Tschudi; Marc Uldry; Jean-Daniel Horisberger; Haim Garty; Käthi Geering
Recently, corticosteroid hormone‐induced factor (CHIF) and the γ‐subunit, two members of the FXYD family of small proteins, have been identified as regulators of renal Na,K‐ATPase. In this study, we have investigated the tissue distribution and the structural and functional properties of FXYD7, another family member which has not yet been characterized. Expressed exclusively in the brain, FXYD7 is a type I membrane protein bearing N‐terminal, post‐translationally added modifications on threonine residues, most probably O‐glycosylations that are important for protein stabilization. Expressed in Xenopus oocytes, FXYD7 can interact with Na,K‐ATPase α1–β1, α2–β1 and α3–β1 but not with α–β2 isozymes, whereas, in brain, it is only associated with α1–β isozymes. FXYD7 decreases the apparent K+ affinity of α1–β1 and α2–β1, but not of α3–β1 isozymes. These data suggest that FXYD7 is a novel, tissue‐ and isoform‐specific Na,K‐ATPase regulator which could play an important role in neuronal excitability.
Reviews on environmental health | 2006
Florianne Monnet-Tschudi; Marie-Gabrielle Zurich; Corina Boschat; Anne Corbaz; Paul Honegger
The incidence of neurodegenerative disease like Parkinsons disease and Alzheimers disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimers disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.
Glia | 2002
Chantra Eskes; Paul Honegger; Lucienne Juillerat-Jeanneret; Florianne Monnet-Tschudi
Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell‐cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated miroglia were found to be directly activated by MeHgCl (10−10 to 10−6 M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl–induced microglial clusters with astrocytes and neurons was observed in three‐dimensional cultures. Close proximity was found between the clusters of lectin‐stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule‐associated protein (MAP‐2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin‐6 release was increased at 10−7 M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL‐6 to three‐dimensional brain cell cultures treated with 3 × 10−7 M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP‐2 and neurofilament‐M. IL‐6 administered to three‐dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL‐6 release, which may cause astrocyte reactivity and neuroprotection. GLIA 37:43–52, 2002.
Brain Research | 1996
Florianne Monnet-Tschudi; Marie-Gabrielle Zurich; Paul Honegger
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Acta Neuropathologica | 1998
Oliver Sorg; Benoît Schilter; Paul Honegger; Florianne Monnet-Tschudi
Abstract Using reaggregating rat brain cell cultures at two different stages of differentiation, we examined the biochemical effects of a 10-day treatment with nanomolar concentrations of methylmercuric chloride (monomethylmercury), in the presence or absence of promoters of hydroxyl radical formation (10 μM copper sulphate plus 100 μM ascorbate). A decrease in total protein content accounted for the general cytotoxicity of these compounds, whereas selective effects were assessed by determining the activities of cell type-specific enzymes. Methylmercury, up to 100 nM, as well as the copper ascorbate mixture, when applied separately, induced no general cytotoxicity, and only slight effects on neuronal parameters. However, when applying 100 nM methylmercury and the copper-ascorbate mixture together, a drastic decrease in neuronal and glial parameters was found. Under these conditions, the content of reactive oxygen species, assessed by 2′,7′-dichlorofluorescin oxidation, increased greatly, while the activities of antioxidant enzymes decreased. In the presence of copper and ascorbate, differentiated cultures appeared more resistant than immature ones to low methylmercury concentrations (1–10 mM), but did undergo similar changes in both cell type-specific and antioxidant enzyme activities at 100 nM methylmercury. These results suggest that in prooxidant conditions low doses of mercury can become much more deleterious for the central nervous system.
Archives of Toxicology | 2015
Anna Bal-Price; Kevin M. Crofton; Marcel Leist; Sandra Allen; Michael Arand; Timo Buetler; Nathalie Delrue; Rex E. FitzGerald; Thomas Hartung; Tuula Heinonen; Helena T. Hogberg; Susanne Hougaard Bennekou; Walter Lichtensteiger; Daniela Maria Oggier; Martin Paparella; Marta Axelstad; Aldert H. Piersma; Eva Rached; Benoît Schilter; Gabriele Schmuck; Luc Stoppini; Enrico Tongiorgi; Manuela Tiramani; Florianne Monnet-Tschudi; Martin F. Wilks; Timo Ylikomi; Ellen Fritsche
Abstract A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23–24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.
Brain Research | 1995
Florianne Monnet-Tschudi; Marie-Gabrielle Zurich; Eric Pithon; Guy van Melle; Paul Honegger
Activation of microglia is a well-documented phenomenon associated with diverse pathological conditions of the central nervous system. In order to investigate the involvement of microglial cells in the neurotoxic action of the heavy metal compound trimethyltin, three-dimensional brain cell cultures were treated during an early developmental period, using concentrations at or below the limit of cytotoxicity. Microglial cells were studied by cytochemical staining, using horseradish peroxidase-conjugated B4 isolectin (GSI-B4). In parallel, neurotoxic effects were assessed by determining the content of synaptophysin and synapsin I, both in the total homogenates and in the synaptosomal fraction of the cultures. Changes in the content of the specific growth cone protein, GAP-43, were also analyzed. It was found that low, non-cytotoxic concentrations of TMT (10(-9) to 10(-8) M) caused a significant increase in the number and/or the clustering of microglial cells. A decrease in the synaptic protein (synapsin I, synaptophysin) content was detected at 10(-8) M of TMT in synaptosomal fractions, whereas in the total homogenates, changes in synaptic proteins and GAP-43 were observed only at the cytotoxic TMT concentration (10(-6) M). Although it remains to be shown whether the microglial response is caused by direct or indirect action of TMT, the present findings show that microglial responsiveness can be detected prior to any sign of neuronal degeneration, and may serve as a sensitive indicator for heavy metal neurotoxicity in the brain.
Journal of Neuroscience Research | 2002
Marie-Gabrielle Zurich; Chantra Eskes; Paul Honegger; Michèle Berode; Florianne Monnet-Tschudi
Despite a wealth of data on the neurotoxic effects of lead at the cellular and molecular levels, the reasons for its development‐dependent neurotoxicity are still unclear. Here, the maturation‐dependent effects of lead acetate were analyzed in immature and differentiated brain cells cultured in aggregates. Markers of general cytotoxicity as well as cell‐type‐specific markers of glial and neuronal cells showed that immature brain cells were more sensitive to lead than the differentiated counterparts, demonstrating that the development‐dependent neurotoxicity of lead can be reproduced in aggregating brain cell cultures. After 10 days of treatment, astrocytes were found to be more affected by lead acetate than neurons in immature cultures, and microglial cells were strongly activated. Eleven days after cessation of the treatment, lead acetate caused a partial loss of astrocytes and an intense reactivity of the remaining ones. Furthermore, microglial cells expressed a macrophagic phenotype, and the loss of activity of neuron‐specific enzymes was aggravated. In differentiated cultures, no reactive gliosis was found. It is hypothetized that the intense glial reactions (microgliosis and astrogliosis) observed in immature cultures contribute to the development‐dependent neurotoxicity of lead.
Human & Experimental Toxicology | 2007
Florianne Monnet-Tschudi; Marie-Gabrielle Zurich; Paul Honegger
Brain inflammatory response is triggered by the activation of microglial cells and astrocytes in response to various types of CNS injury, including neurotoxic insults. Its outcome is determined by cellular interactions, inflammatory mediators, as well as trophic and/or cytotoxic signals, and depends on many additional factors such as the intensity and duration of the insult, the extent of both the primary neuronal damage and glial reactivity and the developmental stage of the brain. Depending on particular circumstances, the brain inflammatory response can promote neuroprotection, regeneration or neurodegeneration. Glial reactivity, regarded as the central phenomenon of brain inflammation, has also been used as an early marker of neurotoxicity. To study the mechanisms underlying the glial reactivity, serum-free aggregating brain cell cultures were used as an in vitro model to test the effects of conventional neurotoxicants such as organophosphate pesticides, heavy metals, excitotoxins and mycotoxins. This approach was found to be relevant and justified by the complex cell—cell interactions involved in the brain inflammatory response, the variability of the glial reactions and the multitude of mediators involved. All these variables need to be considered for the elucidation of the specific cellular and molecular reactions and their consequences caused by a given chemical insult. Human & Experimental Toxicology (2007) 26, 339—346