Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fosco Bernasconi is active.

Publication


Featured researches published by Fosco Bernasconi.


The Journal of Neuroscience | 2010

Brain Dynamics Underlying Training-Induced Improvement in Suppressing Inappropriate Action

Aurélie L. Manuel; Jeremy Grivel; Fosco Bernasconi; Micah M. Murray; Lucas Spierer

Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to “NoGo” stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized “Go” and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61–104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31–81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.


Cortex | 2013

Plastic modifications within inhibitory control networks induced by practicing a stop-signal task: an electrical neuroimaging study

Aurélie L. Manuel; Fosco Bernasconi; Lucas Spierer

INTRODUCTION Inhibitory control refers to our ability to suppress ongoing motor, affective or cognitive processes and mostly depends on a fronto-basal brain network. Inhibitory control deficits participate in the emergence of several prominent psychiatric conditions, including attention deficit/hyperactivity disorder or addiction. The rehabilitation of these pathologies might therefore benefit from training-based behavioral interventions aiming at improving inhibitory control proficiency and normalizing the underlying neurophysiological mechanisms. The development of an efficient inhibitory control training regimen first requires determining the effects of practicing inhibition tasks. METHODS We addressed this question by contrasting behavioral performance and electrical neuroimaging analyses of event-related potentials (ERPs) recorded from humans at the beginning versus the end of 1 h of practice on a stop-signal task (SST) involving the withholding of responses when a stop signal was presented during a speeded auditory discrimination task. RESULTS Practicing a short SST improved behavioral performance. Electrophysiologically, ERPs differed topographically at 200 msec post-stimulus onset, indicative of the engagement of distinct brain network with learning. Source estimations localized this effect within the inferior frontal gyrus, the pre-supplementary motor area and the basal ganglia. CONCLUSION Our collective results indicate that behavioral and brain responses during an inhibitory control task are subject to fast plastic changes and provide evidence that high-order fronto-basal executive networks can be modified by practicing a SST.


NeuroImage | 2012

Auditory perceptual decision-making based on semantic categorization of environmental sounds.

Marzia De Lucia; Athina Tzovara; Fosco Bernasconi; Lucas Spierer; Micah M. Murray

Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of these stages and their links to perception were the focus of the present study. We presented 250 ms duration sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial classifier that identified voltage topographies and latencies at which brain responses are most discriminative. For sounds that the subjects could not categorize, we could successfully decode the semantic category based on differences in voltage topographies during the 116-174 ms post-stimulus period. Sounds that were correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before the sound ended (starting at 112 ms) and on a separate period at ~270 ms post-stimulus onset. Because each of these periods could be used to reliably decode semantic categories, we interpreted the first as being related to an implicit tuning for sound representations and the second as being linked to perceptual decision-making processes. Collectively, our results show that the brain discriminates environmental sounds during early stages and independently of behavioral proficiency and that explicit sound categorization requires a subsequent processing stage.


Hearing Research | 2011

Learning-induced plasticity in human audition: objects, time, and space.

Lucas Spierer; Marzia De Lucia; Fosco Bernasconi; Jeremy Grivel; Nathalie M.-P. Bourquin; Stephanie Clarke; Micah M. Murray

The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ~300 ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.


International Journal of Psychophysiology | 2011

Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy.

Fosco Bernasconi; Aurélie L. Manuel; Micah M. Murray; Lucas Spierer

Both neural and behavioral responses to stimuli are influenced by the state of the brain immediately preceding their presentation, notably by pre-stimulus oscillatory activity. Using frequency analysis of high-density electroencephalogram coupled with source estimations, the present study investigated the role of pre-stimulus oscillatory activity in auditory spatial temporal order judgments (TOJ). Oscillations within the beta range (i.e. 18-23 Hz) were significantly stronger before accurate than inaccurate TOJ trials. Distributed source estimations identified bilateral posterior sylvian regions as the principal contributors to pre-stimulus beta oscillations. Activity within the left posterior sylvian region was significantly stronger before accurate than inaccurate TOJ trials. We discuss our results in terms of a modulation of sensory gating mechanisms mediated by beta activity.


Journal of Cognitive Neuroscience | 2012

Spatio-temporal brain dynamics mediating post-error behavioral adjustments

Aurélie L. Manuel; Fosco Bernasconi; Micah M. Murray; Lucas Spierer

Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with “preceding performance” (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80–110 msec poststimulus onset and then as a function of stimulus type at 110–140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.


NeuroImage | 2010

Plastic brain mechanisms for attaining auditory temporal order judgment proficiency

Fosco Bernasconi; Jeremy Grivel; Micah M. Murray; Lucas Spierer

Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity.


The Journal of Neuroscience | 2011

Noise in Brain Activity Engenders Perception and Influences Discrimination Sensitivity

Fosco Bernasconi; Marzia De Lucia; Athina Tzovara; Aurélie L. Manuel; Micah M. Murray; Lucas Spierer


Neuropsychologia | 2010

Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment

Fosco Bernasconi; Jeremy Grivel; Micah M. Murray; Lucas Spierer


Neuropsychologia | 2011

Dynamic calibration of our sense of time

Jeremy Grivel; Fosco Bernasconi; Aurélie L. Manuel; Micah M. Murray; Lucas Spierer

Collaboration


Dive into the Fosco Bernasconi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge