Francesc Accensi
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesc Accensi.
International Journal of Food Microbiology | 2002
F. J. Cabañes; Francesc Accensi; M.R. Bragulat; M. L. Abarca; G. Castellá; S. Mínguez; A Pons
During a microvinification trial using natural mouldy grapes from a research experimental vineyard, ochratoxin A (OTA) contaminated white wine was obtained. Potential OTA-producing mycobiota of grape samples used in this microvinification process was assessed. Only Aspergillus carbonarius isolates were detected as producers of OTA. Our report is a strong evidence of the contribution of A. carbonarius in the OTA contamination in wine.
Journal of Food Protection | 2003
M. L. Abarca; Francesc Accensi; M.R. Bragulat; G. Castellá; F. J. Cabañes
Ochratoxin A (OTA) can occur in a wide range of foods, but unexpectedly high concentrations have been detected in dried vine fruits of various origins. The European Union has recently established a maximum OTA limit of 10 microg/kg for these foodstuffs. In order to determine the likely origin of OTA, a mycological study of 50 dried fruit samples (currants, raisins, and sultanas) representative of the Spanish market was conducted. Fungal contamination was detected in 49 of 50 (98%) samples. Black aspergilli were isolated from all of the positive samples. Aspergillus niger var. niger was isolated from 98% of the samples, and Aspergillus carbonarius was found in 58% of the samples. One hundred sixty-eight A. niger var. niger isolates and 91 A. carbonarius isolates were screened for their ability to produce OTA. Eighty-eight (96.7%) A. carbonarius isolates and one (0.6%) A. niger var. niger isolate were found to be OTA producers. Black aspergilli were the dominant fungi. Among black aspergilli, A. carbonarius has shown a consistent ability to produce OTA and is the most probable source of this mycotoxin in these substrates.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2004
M. Lourdes Abarca; Francesc Accensi; José Cano; F. Javier Cabañes
Members of Aspergillus section Nigri (formerly A. niger group) are distributed worldwide and are regarded as common food spoilage fungi. Some of them are widely used and studied for industrial purposes. They are common sources of extracellular enzymes and organic acids to be used in food processing and are also used in the production of traditional foods, especially in the Orient. Products produced by strains of Aspergillus niger hold the GRAS (Generally Recognised As Safe) status from the FDA. However some species in Aspergillus section Nigri can produce ochratoxin A, a nephrotoxic mycotoxin. In spite of their industrial importance, the taxonomy of black aspergilli (Aspergillus section Nigri) is not clear and many attempts have been made in order to find suitable taxonomic criteria. The aim of this paper is to provide an overview of the significance of black aspergilli focusing on all the approaches made in the taxonomy of this group of fungi. Some species, such as A. carbonarius and uniseriate species can be easily recognised. In the A. niger aggregate, although speciation at molecular level has been proposed, no morphological differences can be observed and species identification will therefore remain problematic. Phylogenetic analyses of ITS and 5.8S rDNA gene region of representative black Aspergillus species and a simple key to the most common species that can be easily distinguished by morphological criteria are also included.
Journal of Food Protection | 2001
M. L. Abarca; Francesc Accensi; M.R. Bragulat; F. J. Cabañes
Ochratoxin A (OA) is receiving attention worldwide because of the hazard it poses to human and animal health. OA contamination of commodities, such as cereals or pork and poultry meat, is well recognized. Nevertheless, there is an increasing number of articles reporting OA contamination in other food commodities, such as coffee, beer, wine, grape juice, and milk, in the last few years. This continuous and increasing exposure to OA that humans experience is reflected in the high incidence of OA in both human blood and milk in several countries. OA was believed to be produced only by Aspergillus ochraceus and closely related species of section Circumdati and by Penicillium verrucosum; however, in the genus Aspergillus, the production of OA has been recently reported by species outside the section Circumdati. Thus, it has been clearly established as a metabolite of different species of the section Nigri, such as Aspergillus niger and Aspergillus carbonarius. OA production ability by Aspergillus spp. is more widespread than previously thought; therefore, there is the possibility that unexpected species can be new sources of this mycotoxin in their natural substrates.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2001
Francesc Accensi; M. L. Abarca; Josep Cano; L. Figuera; F. J. Cabañes
Ochratoxin A (OA) production of 92 isolates belonging to the A. niger aggregate was tested. All these isolates were grouped into the two proposed species A. niger and A. tubingensis, according to their ITS-5.8S rDNA RFLP patterns. The distribution of the isolates into the two species was very similar since 52.2% were classified as pattern T (corresponding to A. tubingensis), and 47.8% were classified as pattern N (corresponding to A. niger). Six out of the 92 isolates studied produced OA. All the OA producing strains were classified as pattern N while none of the isolates classified as pattern T produced OA.
PLOS ONE | 2012
Jordi Argilaguet; Eva Pérez-Martín; Miquel Nofrarías; Carmina Gallardo; Francesc Accensi; Anna Lacasta; Mercedes Mora; Maria Ballester; I. Galindo-Cardiel; Sergio López-Soria; José M. Escribano; Pedro A. Reche; Fernando Rodriguez
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.
Journal of Food Protection | 1997
M. L. Abarca; M.R. Bragulat; G. Castellá; Francesc Accensi; F. J. Cabañes
A total of 176 isolates of the genus Aspergillus were screened for their ability to produce ochratoxin A in yeast extract-sucrose broth and on moistened com. Besides being produced by A. ochraceus and A. alliaceus , ochratoxin A was produced by one isolate of A. fumigatus and one of A. versicolor ; species not previously reported to produce this mycotoxin.
Vaccine | 2011
Jordi M. Argilaguet; Eva Perez-Martin; Carmina Gallardo; F.J. Salguero; B. Borrego; A. Lacasta; Francesc Accensi; I. Díaz; Miquel Nofrarías; J. Pujols; E. Blanco; M. Pérez-Filgueira; José M. Escribano; Fernando Rodriguez
One of the main criticisms to DNA vaccines is the poor immunogenicity that they confer on occasions, at least in large animals. Confirming this theory, immunization with plasmid DNA encoding two African swine fever virus genes in frame (pCMV-PQ), failed in inducing detectable immune responses in pigs, while it was successful in mice. Aiming to improve the immune responses induced in swine, a new plasmid was constructed, encoding the viral genes fused in frame with a single chain variable fragment of an antibody specific for a swine leukocyte antigen II (pCMV-APCH1PQ). Our results clearly demonstrate that targeting antigens to antigen professional cells exponentially enhanced the immune response induced in pigs, albeit that the DNA vaccine was not able to confer protection against lethal viral challenge. Indeed, a viremia exacerbation was observed in each of the pigs that received the pCMV-APCH1PQ plasmid, this correlating with the presence of non-neutralizing antibodies and antigen-specific SLA II-restricted T-cells. The implications of our discoveries for the development of future vaccines against African swine fever virus and other swine pathogens are discussed.
Journal of Virology | 2014
Anna Lacasta; Maria Ballester; Paula L. Monteagudo; Javier M. Rodríguez; María L. Salas; Francesc Accensi; Sonia Pina-Pedrero; Albert Bensaid; Jordi M. Argilaguet; Sergio López-Soria; Evelyne Hutet; Marie Frédérique Le Potier; Fernando Rodriguez
ABSTRACT African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8+ T cells in blood. Aiming to demonstrate the presence of additional CD8+ T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 104 hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness.
Virus Research | 2013
I. Galindo-Cardiel; Maria Ballester; David Solanes; Miquel Nofrarías; Sergio López-Soria; Jordi Argilaguet; Anna Lacasta; Francesc Accensi; Fernando Rodriguez; Joaquim Segalés
African swine fever is still one of the major viral diseases of swine for which a commercial vaccine is lacking. For the design and development of such preventive products, researchers involved in African swine fever virus (ASFV) vaccinology need standardized challenge protocols and well characterized clinical, pathological and immunological responses of inbreed and outbreed pigs to different viral strains and vaccine-like products. The different approaches used should be assessed by immunologist, virologist and pathologist expertise. The main objectives of this guideline are to (1) briefly contextualize the clinical and pathological ASFV presentations focusing on points that are critical for pathogenesis, (2) provide recommendations concerning the analysis of clinical, gross and microscopic observations and (3) standardize the pathological report, the terminology employed and the evaluation of the severity of the lesions between the ASFV research groups for comparing inter-group data. The presented guidelines establish new approaches to integrate such relevant pathological data with virological and immunological testing, giving support to the global interpretation of the findings in the future experiments of ASFV-related vaccinology and immunology.