Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordi Argilaguet is active.

Publication


Featured researches published by Jordi Argilaguet.


Vaccine | 2011

Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation

Katherine King; Dave Chapman; Jordi Argilaguet; Emma Fishbourne; Evelyne Hutet; Roland Cariolet; Geoff Hutchings; C.A.L. Oura; Christopher L. Netherton; Katy Moffat; Geraldine Taylor; Marie-Frédérique Le Potier; Linda K. Dixon; Haru-H. Takamatsu

African swine fever (ASF) is an acute haemorrhagic disease of domestic pigs for which there is currently no vaccine. We showed that experimental immunisation of pigs with the non-virulent OURT88/3 genotype I isolate from Portugal followed by the closely related virulent OURT88/1 genotype I isolate could confer protection against challenge with virulent isolates from Africa including the genotype I Benin 97/1 isolate and genotype X Uganda 1965 isolate. This immunisation strategy protected most pigs challenged with either Benin or Uganda from both disease and viraemia. Cross-protection was correlated with the ability of different ASFV isolates to stimulate immune lymphocytes from the OURT88/3 and OURT88/1 immunised pigs.


PLOS ONE | 2012

DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies.

Jordi Argilaguet; Eva Pérez-Martín; Miquel Nofrarías; Carmina Gallardo; Francesc Accensi; Anna Lacasta; Mercedes Mora; Maria Ballester; I. Galindo-Cardiel; Sergio López-Soria; José M. Escribano; Pedro A. Reche; Fernando Rodriguez

The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.


Journal of Immunological Methods | 2011

A NEW MODEL FOR THE ESTIMATION OF CELL PROLIFERATION DYNAMICS USING CFSE DATA

Harvey Thomas Banks; Karyn L. Sutton; W. Clayton Thompson; Gennady Bocharov; Marie Doumic; Tim Schenkel; Jordi Argilaguet; Sandra Giest; Cristina Peligero; Andreas Meyerhans

CFSE analysis of a proliferating cell population is a popular tool for the study of cell division and divisionlinked changes in cell behavior. Recently Banks et al. (2011), Luzyanina et al. (2009), Luzyanina et al. (2007), a partial differential equation (PDE) model to describe lymphocyte dynamics in a CFSE proliferation assay was proposed. We present a significant revision of this model which improves the physiological understanding of several parameters. Namely, the parameter used previously as a heuristic explanation for the dilution of CFSE dye by cell division is replaced with a more physical component, cellular autofluorescence. The rate at which label decays is also quantified using a Gompertz decay process. We then demonstrate a revised method of fitting the model to the commonly used histogram representation of the data. It is shown that these improvements result in a model with a strong physiological basis which is fully capable of replicating the behavior observed in the data.


Mathematical Biosciences and Engineering | 2012

A DIVISION-DEPENDENT COMPARTMENTAL MODEL FOR COMPUTING CELL NUMBERS IN CFSE-BASED LYMPHOCYTE PROLIFERATION ASSAYS

Harvey Thomas Banks; W C Thompson; Cristina Peligero; Sandra Giest; Jordi Argilaguet; Andreas Meyerhans

Some key features of a mathematical description of an immune response are an estimate of the number of responding cells and the manner in which those cells divide, differentiate, and die. The intracellular dye CFSE is a powerful experimental tool for the analysis of a population of dividing cells, and numerous mathematical treatments have been aimed at using CFSE data to describe an immune response [30,31,32,37,38,42,48,49]. Recently, partial differential equation structured population models, with measured CFSE fluorescence intensity as the structure variable, have been shown to accurately fit histogram data obtained from CFSE flow cytometry experiments [18,19,52,54]. In this report, the population of cells is mathematically organized into compartments, with all cells in a single compartment having undergone the same number of divisions. A system of structured partial differential equations is derived which can be fit directly to CFSE histogram data. From such a model, cell counts (in terms of the number of divisions undergone) can be directly computed and thus key biological parameters such as population doubling time and precursor viability can be determined. Mathematical aspects of this compartmental model are discussed, and the model is fit to a data set. As in [18,19], we find temporal and division dependence in the rates of proliferation and death to be essential features of a structured population model for CFSE data. Variability in cellular autofluorescence is found to play a significant role in the data, as well. Finally, the compartmental model is compared to previous work, and statistical aspects of the experimental data are discussed.


Antiviral Research | 2013

BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus

Jordi Argilaguet; Eva Pérez-Martín; Sergio López; Martin Goethe; José M. Escribano; Katrin Giesow; Günther M. Keil; Fernando Rodriguez

Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development.


PLOS Pathogens | 2015

PD-L1 Blockade Differentially Impacts Regulatory T Cells from HIV-Infected Individuals Depending on Plasma Viremia.

Cristina Peligero; Jordi Argilaguet; Roberto Güerri-Fernández; Berta Torres; Carmen Ligero; Pilar Colomer; Montserrat Plana; Hernando Knobel; Felipe García; Andreas Meyerhans

Blocking the PD-1/PD-L1 pathway has emerged as a potential therapy to restore impaired immune responses in human immunodeficiency virus (HIV)-infected individuals. Most reports have studied the impact of the PD-L1 blockade on effector cells and neglected possible effects on regulatory T cells (Treg cells), which play an essential role in balancing immunopathology and antiviral effector responses. The aim of this study was to define the consequences of ex vivo PD-L1 blockade on Treg cells from HIV-infected individuals. We observed that HIV infection led to an increase in PD-1+ and PD-L1+ Treg cells. This upregulation correlated with disease progression and decreased under antiretroviral treatment. Treg cells from viremic individuals had a particularly high PD-1 expression and impaired proliferative capacity in comparison with Treg cells from individuals under antiretroviral treatment. PD-L1 blockade restored the proliferative capacity of Treg cells from viremic individuals but had no effect on its suppressive capacity. Moreover, it increased the viral production in cell cultures from viremic individuals. This increase in viral production correlated with an increase in Treg cell percentage and a reduction in the CD4/Treg and CD8/Treg cell ratios. In contrast to the effect of the PD-L1 blockade on Treg cells from viremic individuals, we did not observe a significant effect on the proliferative capacity of Treg cells from individuals in whom viremia was controlled (either spontaneously or by antiretroviral treatment). However, PD-L1 blockade resulted in an increased proliferative capacity of HIV-specific-CD8 T cells in all subjects. Taken together, our findings suggest that manipulating PD-L1 in vivo can be expected to influence the net gain of effector function depending on the subject’s plasma viremia.


Virus Research | 2013

Standardization of pathological investigations in the framework of experimental ASFV infections

I. Galindo-Cardiel; Maria Ballester; David Solanes; Miquel Nofrarías; Sergio López-Soria; Jordi Argilaguet; Anna Lacasta; Francesc Accensi; Fernando Rodriguez; Joaquim Segalés

African swine fever is still one of the major viral diseases of swine for which a commercial vaccine is lacking. For the design and development of such preventive products, researchers involved in African swine fever virus (ASFV) vaccinology need standardized challenge protocols and well characterized clinical, pathological and immunological responses of inbreed and outbreed pigs to different viral strains and vaccine-like products. The different approaches used should be assessed by immunologist, virologist and pathologist expertise. The main objectives of this guideline are to (1) briefly contextualize the clinical and pathological ASFV presentations focusing on points that are critical for pathogenesis, (2) provide recommendations concerning the analysis of clinical, gross and microscopic observations and (3) standardize the pathological report, the terminology employed and the evaluation of the severity of the lesions between the ASFV research groups for comparing inter-group data. The presented guidelines establish new approaches to integrate such relevant pathological data with virological and immunological testing, giving support to the global interpretation of the findings in the future experiments of ASFV-related vaccinology and immunology.


Veterinary Research | 2015

Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection

Anna Lacasta; Paula L. Monteagudo; Ángeles Jiménez-Marín; Francesc Accensi; Maria Ballester; Jordi Argilaguet; I. Galindo-Cardiel; Joaquim Segalés; María L. Salas; Javier Domínguez; Angela Moreno; Juan J. Garrido; Fernando Rodriguez

African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8+ T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.


Transplant Immunology | 2016

Calcineurin and mTOR inhibitors have opposing effects on regulatory T cells while reducing regulatory B cell populations in kidney transplant recipients.

Irene Latorre; Ana Esteve-Sole; Dolores Redondo; Sandra Giest; Jordi Argilaguet; Sara Alvarez; Cristina Peligero; Isabelle Forstmann; Marta Crespo; Julio Pascual; Andreas Meyerhans

BACKGROUND Regulatory B (Breg) and T (Treg) cells represent a biomarker for tolerance in transplant patients. Despite the importance of Treg and Breg in transplantation and the suggested crosstalk between both suppressive cell populations, little is known on how they are influenced by long-term immunosuppressive treatment. The aim of the present study was to investigate the effect of different immunosuppressive drugs used in routine clinical practice on Treg and Breg cell numbers. METHODS Thirty-six kidney transplant recipients with stable graft function were recruited and classified according to their concomitant therapy: 22 patients received calcineurin inhibitors (CNI) and 14 patients received mammalian target of rapamycin (mTOR) inhibitors. A group of 8 healthy untreated subjects was included as control. Absolute numbers of peripheral blood-derived IL10-producing B cells (CD19(+)IL10(+)), CD19(+)CD24(hi)CD38(hi) transitional B cells and Treg cells (CD4(+)CD25(+)FOXP3(+)) were quantified in all KT patients and controls by flow cytometry. RESULTS CD19(+)CD24(hi)CD38(hi) transitional B cells increased over time and seem to be related with long-term therapeutic graft survival irrespective of the treatment regimen. CNI and mTOR inhibitors significantly reduced numbers of Breg cells when compared with healthy individuals, whereas mTOR inhibitors expanded Treg cells in comparison with CNI drugs. CONCLUSIONS Bridging the drug-mediated reduction of Breg cell numbers in vivo with the requirements of Breg cells for long-term transplant success remains an as yet unresolved task for therapeutic intervention. Further larger cohort studies that evaluate the effect of different treatment regimen on defined lymphocyte subpopulations are warranted.


Journal of Biological Dynamics | 2013

A novel statistical analysis and interpretation of flow cytometry data

Harvey Thomas Banks; D. F. Kapraun; W C Thompson; Cristina Peligero; Jordi Argilaguet; Andreas Meyerhans

A recently developed class of models incorporating the cyton model of population generation structure into a conservation-based model of intracellular label dynamics is reviewed. Statistical aspects of the data collection process are quantified and incorporated into a parameter estimation scheme. This scheme is then applied to experimental data for PHA-stimulated CD4+T and CD8+T cells collected from two healthy donors. This novel mathematical and statistical framework is shown to form the basis for accurate, meaningful analysis of cellular behaviour for a population of cells labelled with the dye carboxyfluorescein succinimidyl ester and stimulated to divide.

Collaboration


Dive into the Jordi Argilaguet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harvey Thomas Banks

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Fernando Rodriguez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sandra Giest

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Gennady Bocharov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Lacasta

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Francesc Accensi

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

I. Galindo-Cardiel

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Maria Ballester

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge