Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Dominici is active.

Publication


Featured researches published by Francesca Dominici.


The New England Journal of Medicine | 2000

Fine particulate air pollution and mortality in 20 U.S. Cities, 1987-1994

Jonathan M. Samet; Francesca Dominici; Frank C. Curriero; Ivan Coursac; Scott L. Zeger

BACKGROUND Air pollution in cities has been linked to increased rates of mortality and morbidity in developed and developing countries. Although these findings have helped lead to a tightening of air-quality standards, their validity with respect to public health has been questioned. METHODS We assessed the effects of five major outdoor-air pollutants on daily mortality rates in 20 of the largest cities and metropolitan areas in the United States from 1987 to 1994. The pollutants were particulate matter that is less than 10 microm in aerodynamic diameter (PM10), ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide. We used a two-stage analytic approach that pooled data from multiple locations. RESULTS After taking into account potential confounding by other pollutants, we found consistent evidence that the level of PM10 is associated with the rate of death from all causes and from cardiovascular and respiratory illnesses. The estimated increase in the relative rate of death from all causes was 0.51 percent (95 percent posterior interval, 0.07 to 0.93 percent) for each increase in the PM10 level of 10 microg per cubic meter. The estimated increase in the relative rate of death from cardiovascular and respiratory causes was 0.68 percent (95 percent posterior interval, 0.20 to 1.16 percent) for each increase in the PM10 level of 10 microg per cubic meter. There was weaker evidence that increases in ozone levels increased the relative rates of death during the summer, when ozone levels are highest, but not during the winter. Levels of the other pollutants were not significantly related to the mortality rate. CONCLUSIONS There is consistent evidence that the levels of fine particulate matter in the air are associated with the risk of death from all causes and from cardiovascular and respiratory illnesses. These findings strengthen the rationale for controlling the levels of respirable particles in outdoor air.


Epidemiology | 2005

A Meta-Analysis of Time-Series Studies of Ozone and Mortality With Comparison to the National Morbidity, Mortality, and Air Pollution Study

Michelle L. Bell; Francesca Dominici; Jonathan M. Samet

Background: Although many time-series studies of ozone and mortality have identified positive associations, others have yielded null or inconclusive results, making the results of these studies difficult to interpret. Methods: We performed a meta-analysis of 144 effect estimates from 39 time-series studies, and estimated pooled effects by lags, age groups, cause-specific mortality, and concentration metrics. We compared results with pooled estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a time-series study of 95 large U.S. urban centers from 1987 to 2000. Results: Both meta-analysis and NMMAPS results provided strong evidence of a short-term association between ozone and mortality, with larger effects for cardiovascular and respiratory mortality, the elderly, and current-day ozone exposure. In both analyses, results were insensitive to adjustment for particulate matter and model specifications. In the meta-analysis, a 10-ppb increase in daily ozone at single-day or 2-day average of lags 0, 1, or 2 days was associated with an 0.87% increase in total mortality (95% posterior interval = 0.55% to 1.18%), whereas the lag 0 NMMAPS estimate is 0.25% (0.12% to 0.39%). Several findings indicate possible publication bias: meta-analysis results were consistently larger than those from NMMAPS; meta-analysis pooled estimates at lags 0 or 1 were larger when only a single lag was reported than when estimates for multiple lags were reported; and heterogeneity of city-specific estimates in the meta-analysis were larger than with NMMAPS. Conclusions: This study provides evidence of short-term associations between ozone and mortality as well as evidence of publication bias.


American Journal of Respiratory and Critical Care Medicine | 2009

Hospital Admissions and Chemical Composition of Fine Particle Air Pollution

Michelle L. Bell; Keita Ebisu; Roger D. Peng; Jonathan M. Samet; Francesca Dominici

RATIONALE There are unexplained geographical and seasonal differences in the short-term effects of fine particulate matter (PM(2.5)) on human health. The hypothesis has been advanced to include the possibility that such differences might be due to variations in the PM(2.5) chemical composition, but evidence supporting this hypothesis is lacking. OBJECTIVES To examine whether variation in the relative risks (RR) of hospitalization associated with ambient exposure to PM(2.5) total mass reflects differences in PM(2.5) chemical composition. METHODS We linked two national datasets by county and by season: (1) long-term average concentrations of PM(2.5) chemical components for 2000-2005 and (2) RRs of cardiovascular and respiratory hospitalizations for persons 65 years or older associated with a 10-microg/m(3) increase in PM(2.5) total mass on the same day for 106 U.S. counties for 1999 through 2005. MEASUREMENTS AND MAIN RESULTS We found a positive and statistically significant association between county-specific estimates of the short-term effects of PM(2.5) on cardiovascular and respiratory hospitalizations and county-specific levels of vanadium, elemental carbon, or nickel PM(2.5) content. CONCLUSIONS Communities with higher PM(2.5) content of nickel, vanadium, and elemental carbon and/or their related sources were found to have higher risk of hospitalizations associated with short-term exposure to PM(2.5).


Environmental Health Perspectives | 2009

Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution.

Roger D. Peng; Michelle L. Bell; Alison S. Geyh; Aidan McDermott; Scott L. Zeger; Jonathan M. Samet; Francesca Dominici

Background Population-based studies have estimated health risks of short-term exposure to fine particles using mass of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) as the indicator. Evidence regarding the toxicity of the chemical components of the PM2.5 mixture is limited. Objective In this study we investigated the association between hospital admission for cardiovascular disease (CVD) and respiratory disease and the chemical components of PM2.5 in the United States. Methods We used a national database comprising daily data for 2000–2006 on emergency hospital admissions for cardiovascular and respiratory outcomes, ambient levels of major PM2.5 chemical components [sulfate, nitrate, silicon, elemental carbon (EC), organic carbon matter (OCM), and sodium and ammonium ions], and weather. Using Bayesian hierarchical statistical models, we estimated the associations between daily levels of PM2.5 components and risk of hospital admissions in 119 U.S. urban communities for 12 million Medicare enrollees (≥ 65 years of age). Results In multiple-pollutant models that adjust for the levels of other pollutants, an interquartile range (IQR) increase in EC was associated with a 0.80% [95% posterior interval (PI), 0.34–1.27%] increase in risk of same-day cardiovascular admissions, and an IQR increase in OCM was associated with a 1.01% (95% PI, 0.04–1.98%) increase in risk of respiratory admissions on the same day. Other components were not associated with cardiovascular or respiratory hospital admissions in multiple-pollutant models. Conclusions Ambient levels of EC and OCM, which are generated primarily from vehicle emissions, diesel, and wood burning, were associated with the largest risks of emergency hospitalization across the major chemical constituents of PM2.5.


Environmental Health Perspectives | 2007

Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies

Michelle L. Bell; Francesca Dominici; Keita Ebisu; Scott L. Zeger; Jonathan M. Samet

Background Although numerous studies have demonstrated links between particulate matter (PM) and adverse health effects, the chemical components of the PM mixture that cause injury are unknown. Objectives This work characterizes spatial and temporal variability of PM2.5 (PM with aerodynamic diameter < 2.5 μm) components in the United States; our objective is to identify components for assessment in epidemiologic studies. Methods We constructed a database of 52 PM2.5 component concentrations for 187 U.S. counties for 2000–2005. First, we describe the challenges inherent to analysis of a national PM2.5 chemical composition database. Second, we identify components that contribute substantially to and/or co-vary with PM2.5 total mass. Third, we characterize the seasonal and regional variability of targeted components. Results Strong seasonal and geographic variations in PM2.5 chemical composition are identified. Only seven of the 52 components contributed ≥ 1% to total mass for yearly or seasonal averages [ammonium (NH4+), elemental carbon (EC), organic carbon matter (OCM), nitrate (NO3−), silicon, sodium (Na+), and sulfate (SO42−)]. Strongest correlations with PM2.5 total mass were with NH4+ (yearly), OCM (especially winter), NO3− (winter), and SO42− (yearly, spring, autumn, and summer), with particularly strong correlations for NH4+ and SO42− in summer. Components that co-varied with PM2.5 total mass, based on daily detrended data, were NH4+, SO42−, OCM, NO32−, bromine, and EC. Conclusions The subset of identified PM2.5 components should be investigated further to determine whether their daily variation is associated with daily variation of health indicators, and whether their seasonal and regional patterns can explain the seasonal and regional heterogeneity in PM10 (PM with aerodynamic diameter < 10 μm) and PM2.5 health risks.


Environmental Health Perspectives | 2006

The Exposure–Response Curve for Ozone and Risk of Mortality and the Adequacy of Current Ozone Regulations

Michelle L. Bell; Roger D. Peng; Francesca Dominici

Time-series analyses have shown that ozone is associated with increased risk of premature mortality, but little is known about how O3 affects health at low concentrations. A critical scientific and policy question is whether a threshold level exists below which O3 does not adversely affect mortality. We developed and applied several statistical models to data on air pollution, weather, and mortality for 98 U.S. urban communities for the period 1987–2000 to estimate the exposure–response curve for tropospheric O3 and risk of mortality and to evaluate whether a “safe” threshold level exists. Methods included a linear approach and subset, threshold, and spline models. All results indicate that any threshold would exist at very low concentrations, far below current U.S. and international regulations and nearing background levels. For example, under a scenario in which the U.S. Environmental Protection Agency’s 8-hr regulation is met every day in each community, there was still a 0.30% increase in mortality per 10-ppb increase in the average of the same and previous days’ O3 levels (95% posterior interval, 0.15–0.45%). Our findings indicate that even low levels of tropospheric O3 are associated with increased risk of premature mortality. Interventions to further reduce O3 pollution would benefit public health, even in regions that meet current regulatory standards and guidelines.


Journal of Toxicology and Environmental Health | 2005

Revised Analyses of the National Morbidity, Mortality, and Air Pollution Study: Mortality Among Residents Of 90 Cities

Francesca Dominici; Aidan McDermott; Michael J. Daniels; Scott L. Zeger; Jonathan M. Samet

This article presents findings from updated analyses of data from 90 U.S. cities assembled for the National Morbidity, Mortality, and Air Pollution Study (NMMAPS). The data were analyzed with a generalized additive model (GAM) using the gamfunction in S-Plus (with default convergence criteria previously used and with more stringent criteria) and with a generalized linear model (GLM) with natural cubic splines. With the original method, the estimated effect of PM10 (particulate matter 10μm in mass median aerodynamic diameter) on total mortality from nonexternal causes was a 0.41% increase per 10−μg/m3 increase in PM10; with the more stringent criteria, the estimate was 0.27%; and with GLM, the effect was 0.21%. The effect of PM10 on respiratory and cardiovascular mortality combined was greater, but the pattern across models was similar. The findings of the updated analysis with regard to spatial heterogeneity across the 90 cities were unchanged from the original analyses.


JAMA | 2008

Coarse Particulate Matter Air Pollution and Hospital Admissions for Cardiovascular and Respiratory Diseases Among Medicare Patients

Roger D. Peng; Howard H. Chang; Michelle L. Bell; Aidan McDermott; Scott L. Zeger; Jonathan M. Samet; Francesca Dominici

CONTEXT Health risks of fine particulate matter of 2.5 microm or less in aerodynamic diameter (PM2.5) have been studied extensively over the last decade. Evidence concerning the health risks of the coarse fraction of greater than 2.5 microm and 10 microm or less in aerodynamic diameter (PM10-2.5) is limited. OBJECTIVE To estimate risk of hospital admissions for cardiovascular and respiratory diseases associated with PM10-2.5 exposure, controlling for PM2.5. DESIGN, SETTING, AND PARTICIPANTS Using a database assembled for 108 US counties with daily cardiovascular and respiratory disease admission rates, temperature and dew-point temperature, and PM10-2.5 and PM2.5 concentrations were calculated with monitoring data as an exposure surrogate from January 1, 1999, through December 31, 2005. Admission rates were constructed from the Medicare National Claims History Files, for a study population of approximately 12 million Medicare enrollees living on average 9 miles (14.4 km) from collocated pairs of PM10 and PM2.5 monitors. MAIN OUTCOME MEASURES Daily counts of county-wide emergency hospital admissions for primary diagnoses of cardiovascular or respiratory disease. RESULTS There were 3.7 million cardiovascular disease and 1.4 million respiratory disease admissions. A 10-microg/m3 increase in PM10-2.5 was associated with a 0.36% (95% posterior interval [PI], 0.05% to 0.68%) increase in cardiovascular disease admissions on the same day. However, when adjusted for PM2.5, the association was no longer statistically significant (0.25%; 95% PI, -0.11% to 0.60%). A 10-microg/m3 increase in PM10-2.5 was associated with a nonstatistically significant unadjusted 0.33% (95% PI, -0.21% to 0.86%) increase in respiratory disease admissions and with a 0.26% (95% PI, -0.32% to 0.84%) increase in respiratory disease admissions when adjusted for PM2.5. The unadjusted associations of PM2.5 with cardiovascular and respiratory disease admissions were 0.71% (95% PI, 0.45%-0.96%) for same-day exposure and 0.44% (95% PI, 0.06% to 0.82%) for exposure 2 days before hospital admission. CONCLUSION After adjustment for PM2.5, there were no statistically significant associations between coarse particulates and hospital admissions for cardiovascular and respiratory diseases.


Journal of the American Statistical Association | 2002

Air Pollution and Mortality: Estimating Regional and National Dose-Response Relationships

Francesca Dominici; Michael J. Daniels; Scott L. Zeger; Jonathan M. Samet

We analyzed a national data base of air pollution and mortality for the 88 largest U.S. cities for the period 1987–1994, to estimate relative rates of mortality associated with airborne particulate matter smaller than 10 microns (PM10) and the form of the relationship between PM10 concentration and mortality. To estimate city-specific relative rates of mortality associated with PM10, we built log-linear models that included nonparametric adjustments for weather variables and longer term trends. To estimate PM10 mortality dose-response curves, we modeled the logarithm of the expected value of daily mortality as a function of PM10 using natural cubic splines with unknown numbers and locations of knots. We also developed spatial models to investigate the heterogeneity of relative mortality rates and of the shapes of PM10 mortality dose-response curves across cities and geographical regions. To determine whether variability in effect estimates can be explained by city-specific factors, we explored the dependence of relative mortality rates on mean pollution levels, demographic variables, reliability of the pollution data, and specific constituents of particulate matter. We implemented estimation with simulation-based methods, including data augmentation to impute the missing data of the city-specific covariates and the reversible jump Markov chain Monte Carlo (RJMCMC) to sample from the posterior distribution of the parameters in the hierarchical spline model. We found that previous-day PM10 concentrations were positively associated with total mortality in most the locations, with a .5% increment for a 10 μg/m3 increase in PM10. The effect was strongest in the Northeast region, where the increase in the death rate was twice as high as the average for the other cities. Overall, we found that the pooled concentration-response relationship for the nation was linear.


Environmental Health Perspectives | 2008

Acute Effects of Ambient Particulate Matter on Mortality in Europe and North America : Results from the APHENA Study

Evangelia Samoli; Roger D. Peng; Tim Ramsay; Marina Pipikou; Giota Touloumi; Francesca Dominici; Rick Burnett; Aaron Cohen; Daniel Krewski; Samet J; Klea Katsouyanni

Background The APHENA (Air Pollution and Health: A Combined European and North American Approach) study is a collaborative analysis of multicity time-series data on the effect of air pollution on population health, bringing together data from the European APHEA (Air Pollution and Health: A European Approach) and U.S. NMMAPS (National Morbidity, Mortality and Air Pollution Study) projects, along with Canadian data. Objectives The main objective of APHENA was to assess the coherence of the findings of the multicity studies carried out in Europe and North America, when analyzed with a common protocol, and to explore sources of possible heterogeneity. We present APHENA results on the effects of particulate matter (PM) ≤ 10 μm in aerodynamic diameter (PM10) on the daily number of deaths for all ages and for those < 75 and ≥ 75 years of age. We explored the impact of potential environmental and socioeconomic factors that may modify this association. Methods In the first stage of a two-stage analysis, we used Poisson regression models, with natural and penalized splines, to adjust for seasonality, with various degrees of freedom. In the second stage, we used meta-regression approaches to combine time-series results across cites and to assess effect modification by selected ecologic covariates. Results Air pollution risk estimates were relatively robust to different modeling approaches. Risk estimates from Europe and United States were similar, but those from Canada were substantially higher. The combined effect of PM10 on all-cause mortality across all ages for cities with daily air pollution data ranged from 0.2% to 0.6% for a 10-μg/m3 increase in ambient PM10 concentration. Effect modification by other pollutants and climatic variables differed in Europe and the United States. In both of these regions, a higher proportion of older people and higher unemployment were associated with increased air pollution risk. Conclusions Estimates of the increased mortality associated with PM air pollution based on the APHENA study were generally comparable with results of previous reports. Overall, risk estimates were similar in Europe and in the United States but higher in Canada. However, PM10 effect modification patterns were somewhat different in Europe and the United States.

Collaboration


Dive into the Francesca Dominici's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott L. Zeger

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Roger D. Peng

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge