Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Bonchi is active.

Publication


Featured researches published by Francesco Bonchi.


web search and data mining | 2010

Learning influence probabilities in social networks

Amit Goyal; Francesco Bonchi; Laks V. S. Lakshmanan

Recently, there has been tremendous interest in the phenomenon of influence propagation in social networks. The studies in this area assume they have as input to their problems a social graph with edges labeled with probabilities of influence between users. However, the question of where these probabilities come from or how they can be computed from real social network data has been largely ignored until now. Thus it is interesting to ask whether from a social graph and a log of actions by its users, one can build models of influence. This is the main problem attacked in this paper. In addition to proposing models and algorithms for learning the model parameters and for testing the learned models to make predictions, we also develop techniques for predicting the time by which a user may be expected to perform an action. We validate our ideas and techniques using the Flickr data set consisting of a social graph with 1.3M nodes, 40M edges, and an action log consisting of 35M tuples referring to 300K distinct actions. Beyond showing that there is genuine influence happening in a real social network, we show that our techniques have excellent prediction performance.


international conference on data engineering | 2008

Never Walk Alone: Uncertainty for Anonymity in Moving Objects Databases

Osman Abul; Francesco Bonchi; Mirco Nanni

Preserving individual privacy when publishing data is a problem that is receiving increasing attention. According to the fc-anonymity principle, each release of data must be such that each individual is indistinguishable from at least k - 1 other individuals. In this paper we study the problem of anonymity preserving data publishing in moving objects databases. We propose a novel concept of k-anonymity based on co-localization that exploits the inherent uncertainty of the moving objects whereabouts. Due to sampling and positioning systems (e.g., GPS) imprecision, the trajectory of a moving object is no longer a polyline in a three-dimensional space, instead it is a cylindrical volume, where its radius delta represents the possible location imprecision: we know that the trajectory of the moving object is within this cylinder, but we do not know exactly where. If another object moves within the same cylinder they are indistinguishable from each other. This leads to the definition of (k,delta) -anonymity for moving objects databases. We first characterize the (k, delta)-anonymity problem and discuss techniques to solve it. Then we focus on the most promising technique by the point of view of information preservation, namely space translation. We develop a suitable measure of the information distortion introduced by space translation, and we prove that the problem of achieving (k,delta) -anonymity by space translation with minimum distortion is NP-hard. Faced with the hardness of our problem we propose a greedy algorithm based on clustering and enhanced with ad hoc pre-processing and outlier removal techniques. The resulting method, named NWA (Never Walk .Alone), is empirically evaluated in terms of data quality and efficiency. Data quality is assessed both by means of objective measures of information distortion, and by comparing the results of the same spatio-temporal range queries executed on the original database and on the (k, delta)-anonymized one. Experimental results show that for a wide range of values of delta and k, the relative error introduced is kept low, confirming that NWA produces high quality (k, delta)-anonymized data.


very large data bases | 2011

A data-based approach to social influence maximization

Amit Goyal; Francesco Bonchi; Laks V. S. Lakshmanan

Influence maximization is the problem of finding a set of users in a social network, such that by targeting this set, one maximizes the expected spread of influence in the network. Most of the literature on this topic has focused exclusively on the social graph, overlooking historical data, i.e., traces of past action propagations. In this paper, we study influence maximization from a novel data-based perspective. In particular, we introduce a new model, which we call credit distribution, that directly leverages available propagation traces to learn how influence flows in the network and uses this to estimate expected influence spread. Our approach also learns the different levels of influence-ability of users, and it is time-aware in the sense that it takes the temporal nature of influence into account. We show that influence maximization under the credit distribution model is NP-hard and that the function that defines expected spread under our model is submodular. Based on these, we develop an approximation algorithm for solving the influence maximization problem that at once enjoys high accuracy compared to the standard approach, while being several orders of magnitude faster and more scalable.


conference on information and knowledge management | 2009

Fast shortest path distance estimation in large networks

Michalis Potamias; Francesco Bonchi; Carlos Castillo; Aristides Gionis

In this paper we study approximate landmark-based methods for point-to-point distance estimation in very large networks. These methods involve selecting a subset of nodes as landmarks and computing offline the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, it can be estimated quickly by combining the precomputed distances. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. We therefore explore theoretical insights to devise a variety of simple methods that scale well in very large networks. The efficiency of the suggested techniques is tested experimentally using five real-world graphs having millions of edges. While theoretical bounds support the claim that random landmarks work well in practice, our extensive experimentation shows that smart landmark selection can yield dramatically more accurate results: for a given target accuracy, our methods require as much as 250 times less space than selecting landmarks at random. In addition, we demonstrate that at a very small accuracy loss our techniques are several orders of magnitude faster than the state-of-the-art exact methods. Finally, we study an application of our methods to the task of social search in large graphs.


very large data bases | 2010

k-nearest neighbors in uncertain graphs

Michalis Potamias; Francesco Bonchi; Aristides Gionis; George Kollios

Complex networks, such as biological, social, and communication networks, often entail uncertainty, and thus, can be modeled as probabilistic graphs. Similar to the problem of similarity search in standard graphs, a fundamental problem for probabilistic graphs is to efficiently answer k-nearest neighbor queries (k-NN), which is the problem of computing the k closest nodes to some specific node. In this paper we introduce a framework for processing k-NN queries in probabilistic graphs. We propose novel distance functions that extend well-known graph concepts, such as shortest paths. In order to compute them in probabilistic graphs, we design algorithms based on sampling. During k-NN query processing we efficiently prune the search space using novel techniques. Our experiments indicate that our distance functions outperform previously used alternatives in identifying true neighbors in real-world biological data. We also demonstrate that our algorithms scale for graphs with tens of millions of edges.


Knowledge and Information Systems | 2013

Topic-aware social influence propagation models

Nicola Barbieri; Francesco Bonchi; Giuseppe Manco

The study of influence-driven propagations in social networks and its exploitation for viral marketing purposes has recently received a large deal of attention. However, regardless of the fact that users authoritativeness, expertise, trust and influence are evidently topic-dependent, the research on social influence has surprisingly largely overlooked this aspect. In this article, we study social influence from a topic modeling perspective. We introduce novel topic-aware influence-driven propagation models that, as we show in our experiments, are more accurate in describing real-world cascades than the standard (i.e., topic-blind) propagation models studied in the literature. In particular, we first propose simple topic-aware extensions of the well-known Independent Cascade and Linear Threshold models. However, these propagation models have a very large number of parameters which could lead to overfitting. Therefore, we propose a different approach explicitly modeling authoritativeness, influence and relevance under a topic-aware perspective. Instead of considering user-to-user influence, the proposed model focuses on user authoritativeness and interests in a topic, leading to a drastic reduction in the number of parameters of the model. We devise methods to learn the parameters of the models from a data set of past propagations. Our experimentation confirms the high accuracy of the proposed models and learning schemes.


european conference on machine learning | 2009

Mining graph evolution rules

Michele Berlingerio; Francesco Bonchi; Björn Bringmann; Aristides Gionis

In this paper we introduce graph-evolution rules , a novel type of frequency-based pattern that describe the evolution of large networks over time, at a local level. Given a sequence of snapshots of an evolving graph, we aim at discovering rules describing the local changes occurring in it. Adopting a definition of support based on minimum image we study the problem of extracting patterns whose frequency is larger than a minimum support threshold. Then, similar to the classical association rules framework, we derive graph-evolution rules from frequent patterns that satisfy a given minimum confidence constraint. We discuss merits and limits of alternative definitions of support and confidence, justifying the chosen framework. To evaluate our approach we devise GERM (Graph Evolution Rule Miner), an algorithm to mine all graph-evolution rules whose support and confidence are greater than given thresholds. The algorithm is applied to analyze four large real-world networks (i.e., two social networks, and two co-authorship networks from bibliographic data), using different time granularities. Our extensive experimentation confirms the feasibility and utility of the presented approach. It further shows that different kinds of networks exhibit different evolution rules, suggesting the usage of these local patterns to globally discriminate different kind of networks.


knowledge discovery and data mining | 2010

Cold start link prediction

Vincent Leroy; Berkant Barla Cambazoglu; Francesco Bonchi

In the traditional link prediction problem, a snapshot of a social network is used as a starting point to predict, by means of graph-theoretic measures, the links that are likely to appear in the future. In this paper, we introduce cold start link prediction as the problem of predicting the structure of a social network when the network itself is totally missing while some other information regarding the nodes is available. We propose a two-phase method based on the bootstrap probabilistic graph. The first phase generates an implicit social network under the form of a probabilistic graph. The second phase applies probabilistic graph-based measures to produce the final prediction. We assess our method empirically over a large data collection obtained from Flickr, using interest groups as the initial information. The experiments confirm the effectiveness of our approach.


extending database technology | 2009

Anonymizing moving objects: how to hide a MOB in a crowd?

Roman Yarovoy; Francesco Bonchi; Laks V. S. Lakshmanan; Wendy Hui Wang

Moving object databases (MOD) have gained much interest in recent years due to the advances in mobile communications and positioning technologies. Study of MOD can reveal useful information (e.g., traffic patterns and congestion trends) that can be used in applications for the common benefit. In order to mine and/or analyze the data, MOD must be published, which can pose a threat to the location privacy of a user. Indeed, based on prior knowledge of a users location at several time points, an attacker can potentially associate that user to a specific moving object (MOB) in the published database and learn her position information at other time points. In this paper, we study the problem of privacy-preserving publishing of moving object database. Unlike in microdata, we argue that in MOD, there does not exist a fixed set of quasi-identifier (QID) attributes for all the MOBs. Consequently the anonymization groups of MOBs (i.e., the sets of other MOBs within which to hide) may not be disjoint. Thus, there may exist MOBs that can be identified explicitly by combining different anonymization groups. We illustrate the pitfalls of simple adaptations of classical k-anonymity and develop a notion which we prove is robust against privacy attacks. We propose two approaches, namely extreme-union and symmetric anonymization, to build anonymization groups that provably satisfy our proposed k-anonymity requirement, as well as yield low information loss. We ran an extensive set of experiments on large real-world and synthetic datasets of vehicular traffic. Our results demonstrate the effectiveness of our approach.


IEEE Intelligent Systems | 2010

Learning and Predicting the Evolution of Social Networks

Bjoern Bringmann; Michele Berlingerio; Francesco Bonchi; Arisitdes Gionis

With the increasing availability of large social network data, there is also an increasing interest in analyzing how those networks evolve over time. Traditionally, the analysis of social networks has focused only on a single snapshot of a network. Researchers have already verified that social networks follow power-law degree distribution, have a small diameter, and exhibit small-world structure and community structure. Attempts to explain the properties of social networks have led to dynamic models inspired by the preferential attachment models which assumes that new network nodes have a higher probability of forming links with high-degree nodes, creating a rich-get-richer effect. Although some effort has been devoted to analyzing global properties of social network evolution, not much has been done to study graph evolution at a microscopic level. A first step in this direction investigated a variety of network formation strategies, showing that edge locality plays a critical role in network evolution. We propose a different approach. Following the paradigm of association rules and frequent-pattern mining, our work searches for typical patterns of structural changes in dynamic networks. Mining for such local patterns is a computationally challenging task that can provide further insight into the increasing amount of evolving network data. Beyond the notion of graph evolution rules (GERs), a concept that we introduced in an earlier work, we developed the Graph Evolution Rule Miner (GERM) software to extract such rules and applied these rules to predict future network evolution.

Collaboration


Dive into the Francesco Bonchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fosca Giannotti

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laks V. S. Lakshmanan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge