Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Piacente is active.

Publication


Featured researches published by Francesco Piacente.


PLOS ONE | 2013

Effects of MicroRNAs on Fucosyltransferase 8 (FUT8) Expression in Hepatocarcinoma Cells

Cinzia Bernardi; Ugo Soffientini; Francesco Piacente; Michela Tonetti

Fucosyltransferase 8 (FUT8) catalyzes the transfer of α1,6-linked fucose to the first N-acetylglucosamine in N-linked glycans (core fucosylation). Increased core fucosylation has been reported during hepatocarcinogenesis, in both cell-associated and secreted proteins. Accordingly, increased core fucosylation of α-fetoprotein and α1-antitrypsin is currently used as a diagnostic and prognostic indicator. The present study provides new evidences that FUT8 can be regulated also through miRNA-mediated mechanisms. Using microRNA/target prediction programs, we identified miR-122 and miR-34a seed regions in the 3′ untranslated region (3′UTR) of FUT8. Then we used human and rodents hepatocarcinoma cell lines to evaluate the impact of transfection of miR-122 and miR-34a mimics on FUT8 mRNA and protein levels. This study demonstrated that forced expression of these miRNAs is able to induce a decrease of FUT8 levels and also to affect core fucosylation of secreted proteins. The ability of miR-122 and miR-34a to specifically interact with and regulate the 3′UTR of FUT8 was demonstrated via a luciferase reporter assay. Since miR-122 and miR-34a downregulation is a common feature in spontaneous human hepatocarcinoma, our finding that these miRNAs are able to target FUT8 3′UTR suggests that, together with transcriptional and other post-transcriptional systems, a miRNA-mediated mechanism could also be involved in the increased core fucosylation observed in liver tumors. Moreover, these findings also point out that miRNAs may be widely involved in the regulation of glycosylation machinery.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans

Cristina De Castro; Antonio Molinaro; Francesco Piacente; James R. Gurnon; Luisa Sturiale; Angelo Palmigiano; Rosa Lanzetta; Michelangelo Parrilli; Domenico Garozzo; Michela Tonetti; James L. Van Etten

The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.


Journal of Biological Chemistry | 2012

Giant DNA Virus Mimivirus Encodes Pathway for Biosynthesis of Unusual Sugar 4-Amino-4,6-dideoxy-d-glucose (Viosamine)

Francesco Piacente; Margherita Marin; Antonio Molinaro; Cristina De Castro; Virginie Seltzer; Annalisa Salis; Gianluca Damonte; Cinzia Bernardi; Jean-Michel Claverie; Chantal Abergel; Michela Tonetti

Background: Mimivirus is highly glycosylated; however, nothing is known about its glycan composition and structure. Results: We identified a Mimivirus UDP-viosamine synthetic pathway, and we determined the sugar composition of viral fibers. Conclusion: Our data give further support to the presence of a Mimivirus-encoded glycosylation machinery. Significance: These results contribute to shed light on the origin of viral glycosylation systems. Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-d-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-d-glucose, a key compound involved also in the biosynthesis of l-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.


Glycobiology | 2014

Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus

Francesco Piacente; Cinzia Bernardi; Margherita Marin; Guillaume Blanc; Chantal Abergel; Michela Tonetti

Mimivirus is a giant DNA virus belonging to the Megaviridae family and infecting unicellular Eukaryotes of the genus Acanthamoeba. The viral particles are characterized by heavily glycosylated surface fibers. Several experiments suggest that Mimivirus and other related viruses encode an autonomous glycosylation system, forming viral glycoproteins independently of their host. In this study, we have characterized three Mimivirus proteins involved in the de novo uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) production: a glutamine-fructose-6-phosphate transaminase (CDS L619), a glucosamine-6-phosphate N-acetyltransferase (CDS L316) and a UDP-GlcNAc pyrophosphorylase (CDS R689). Sequence and enzymatic analyses have revealed some unique features of the viral pathway. While it follows the eukaryotic-like strategy, it also shares some properties of the prokaryotic pathway. Phylogenetic analyses revealed that the Megaviridae enzymes cluster in monophyletic groups, indicating that they share common ancestors, but did not support the hypothesis of recent acquisitions from one of the known hosts. Rather, viral clades branched at deep nodes in phylogenetic trees, forming independent clades outside sequenced cellular organisms. The intermediate properties between the eukaryotic and prokaryotic pathways, the phylogenetic analyses and the fact that these enzymes are shared between most of the known members of the Megaviridae family altogether suggest that the viral pathway has an ancient origin, resulting from lateral transfers of cellular genes early in the Megaviridae evolution, or from vertical inheritance from a more complex cellular ancestor (reductive evolution hypothesis). The identification of a virus-encoded UDP-GlcNAc pathway reinforces the concept that GlcNAc is a ubiquitous sugar representing a universal and fundamental process in all organisms.


Cancer Research | 2017

Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to NAMPT inhibitors and DNA repair

Francesco Piacente; Irene Caffa; Silvia Ravera; Giovanna Sociali; Mario Passalacqua; Valerio Gaetano Vellone; Pamela Becherini; Daniele Reverberi; Fiammetta Monacelli; Alberto Ballestrero; Patrizio Odetti; Antonia Cagnetta; Michele Cea; Aimable Nahimana; Michel A. Duchosal; Santina Bruzzone; Alessio Nencioni

In the last decade, substantial efforts have been made to identify NAD+ biosynthesis inhibitors, specifically against nicotinamide phosphoribosyltransferase (NAMPT), as preclinical studies indicate their potential efficacy as cancer drugs. However, the clinical activity of NAMPT inhibitors has proven limited, suggesting that alternative NAD+ production routes exploited by tumors confer resistance. Here, we show the gene encoding nicotinic acid phosphoribosyltransferase (NAPRT), a second NAD+-producing enzyme, is amplified and overexpressed in a subset of common types of cancer, including ovarian cancer, where NAPRT expression correlates with a BRCAness gene expression signature. Both NAPRT and NAMPT increased intracellular NAD+ levels. NAPRT silencing reduced energy status, protein synthesis, and cell size in ovarian and pancreatic cancer cells. NAPRT silencing sensitized cells to NAMPT inhibitors both in vitro and in vivo; similar results were obtained with the NAPRT inhibitor 2-hydroxynicotinic acid. Reducing NAPRT levels in a BRCA2-deficient cancer cell line exacerbated DNA damage in response to chemotherapeutics. In conclusion, NAPRT-dependent NAD+ biosynthesis contributes to cell metabolism and to the DNA repair process in a subset of tumors. This knowledge could be used to increase the efficacy of NAMPT inhibitors and chemotherapy. Cancer Res; 77(14); 3857-69. ©2017 AACR.


International Journal of Molecular Sciences | 2015

The Autonomous Glycosylation of Large DNA Viruses.

Francesco Piacente; Matteo Gaglianone; Maria Elena Laugieri; Michela Tonetti

Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.


Journal of Biological Chemistry | 2014

Giant Virus Megavirus chilensis Encodes the Biosynthetic Pathway for Uncommon Acetamido Sugars.

Francesco Piacente; Cristina De Castro; Sandra Jeudy; Antonio Molinaro; Annalisa Salis; Gianluca Damonte; Cinzia Bernardi; Chantal Abergel; Michela Tonetti

Background: Much evidence indicates that giant viruses, including Megavirus chilensis, possibly encode autonomous glycosylation systems. Results: The Megavirus genome encodes proteins involved in the synthesis of 2-acetamido-2,6-dideoxy hexoses. Conclusion: N-Acetyl-rhamnosamine that is found in the virion glycans is produced by a novel viral biosynthetic pathway. Significance: These results will help in understanding the origin and function of the virally encoded glycosylation machineries. Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways.


Cancer and Metabolism | 2018

Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA

Natthakan Thongon; Chiara Zucal; Vito G. D’Agostino; Toma Tebaldi; Silvia Ravera; Federica Zamporlini; Francesco Piacente; Ruxanda Moschoi; Nadia Raffaelli; Alessandro Quattrone; Alessio Nencioni; Jean-François Peyron; Alessandro Provenzani

BackgroundInhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance.MethodsWe developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms.ResultsAcquired resistance to FK866 was independent of NAMPT mutations but rather was based on a shift towards a glycolytic metabolism and on lactate dehydrogenase A (LDHA) activity. In addition, resistant CCRF-CEM cells, which exhibit high quinolinate phosphoribosyltransferase (QPRT) activity, also exploited amino acid catabolism as an alternative source for NAD+ production, becoming addicted to tryptophan and glutamine and sensitive to treatment with the amino acid transport inhibitor JPH203 and with l-asparaginase, which affects glutamine exploitation. Vice versa, in line with their low QPRT expression, FK866-resistant MDA MB231 did not rely on amino acids for their resistance phenotype.ConclusionsOur study identifies novel mechanisms of resistance to NAMPT inhibition, which may be useful to design more rational strategies for targeting cancer metabolism.


Journal of Biological Chemistry | 2017

The rare sugar N-acetylated viosamine is a major component of Mimivirus fibers

Francesco Piacente; Cristina De Castro; Sandra Jeudy; Matteo Gaglianone; Maria Elena Laugieri; Anna Notaro; Annalisa Salis; Gianluca Damonte; Chantal Abergel; Michela Tonetti

The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.


Bioorganic & Medicinal Chemistry | 2017

SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects

Patrizia Damonte; Giovanna Sociali; Marco Daniele Parenti; Debora Soncini; Inga Bauer; Silvia Boero; Alessia Grozio; Maria von Holtey; Francesco Piacente; Pamela Becherini; Annalisa Salis; Gianluca Damonte; Michele Cea; Maximilien Murone; Alessandro Poggi; Alessio Nencioni; Alberto Del Rio; Santina Bruzzone

The NAD+-dependent deacetylase SIRT6 is an emerging cancer drug target, whose inhibition sensitizes cancer cells to chemo-radiotherapy and has pro-differentiating effects. Here we report on the identification of novel SIRT6 inhibitors with a salicylate-based structure. The new SIRT6 inhibitors show improved potency and specificity compared to the hit inhibitor identified in an in silico compound screen. As predicted based on SIRT6 biological roles, the new leads increase histone 3 lysine 9 acetylation and glucose uptake in cultured cells, while blocking TNF-α production and T lymphocyte proliferation. Notably, the new SIRT6 inhibitors effectively sensitize pancreatic cancer cells to gemcitabine. Finally, studies of compound fingerprinting and pharmacokinetics defined the drug-like properties of one of the new SIRT6 inhibitors, potentially allowing for subsequent in vivo proof-of-concept studies. In conclusion, new SIRT6 inhibitors with a salicylate-like structure were identified, which are active in cells and could potentially find applications in disease conditions, including cancer and immune-mediated disorders.

Collaboration


Dive into the Francesco Piacente's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina De Castro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Molinaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge