Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franck Salin is active.

Publication


Featured researches published by Franck Salin.


Molecular Ecology Resources | 2011

Current trends in microsatellite genotyping.

E. Guichoux; L. Lagache; S. Wagner; P. Chaumeil; Patrick Léger; Olivier Lepais; C. Lepoittevin; Thibaut Malausa; Franck Salin; Rémy J. Petit

Microsatellites have been popular molecular markers ever since their advent in the late eighties. Despite growing competition from new genotyping and sequencing techniques, the use of these versatile and cost‐effective markers continues to increase, boosted by successive technical advances. First, methods for multiplexing PCR have considerably improved over the last years, thereby decreasing genotyping costs and increasing throughput. Second, next‐generation sequencing technologies allow the identification of large numbers of microsatellite loci at reduced cost in non‐model species. As a consequence, more stringent selection of loci is possible, thereby further enhancing multiplex quality and efficiency. However, current practices are lagging behind. By surveying recently published population genetic studies relying on simple sequence repeats, we show that more than half of the studies lack appropriate quality controls and do not make use of multiplex PCR. To make the most of the latest technical developments, we outline the need for a well‐established strategy including standardized high‐throughput bench protocols and specific bioinformatic tools, from primer design to allele calling.


BMC Genomics | 2010

Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak

Saneyoshi Ueno; Grégoire Le Provost; Valérie Léger; Christophe Klopp; Céline Noirot; Jean-Marc Frigerio; Franck Salin; Jérôme Salse; Michael Abrouk; Florent Murat; Oliver Brendel; Jérémy Derory; Pierre Abadie; Patrick Léger; Cyril Cabane; Aurélien Barré; Antoine de Daruvar; Arnaud Couloux; Patrick Wincker; Antoine Kremer; Christophe Plomion

BackgroundThe Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity.ResultsWe generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html.ConclusionsThis genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations.


Biological Research | 2007

A micromethod for high throughput RNA extraction in forest trees.

Grégoire Le Provost; Raúl Herrera; Jorge Paiva; Philippe Chaumeil; Franck Salin; Christophe Plomion

A large quantity of high quality RNA is often required in the analysis of gene expression. However, RNA extraction from samples taken from woody plants is generally complex, and represents the main limitation to study gene expression, particularly in refractory species like conifers. Standard RNA extraction protocols are available but they are highly time consuming, and not adapted to large scale extraction. Here we present a high-throughput RNA extraction protocol. This protocol was adapted to a micro-scale by modifying the classical cetyltrimethylammonium (CTAB) protocol developed for pine: (i) quantity of material used (100-200 mg of sample), (ii) disruption of samples in microtube using a mechanical tissue disrupter, and (iii) the use of SSTE buffer. One hundred samples of woody plant tissues/organs can be easily treated in two working days. An average of 15 \ig of high quality RNA per sample was obtained. The RNA extracted is suitable for applications such as real time reverse transcription polymerase chain reaction, cDNA library construction or synthesis of complex targets for microarray analysis.


Molecular Ecology Resources | 2016

Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies

Christophe Plomion; Jean-Marc Aury; Joelle Amselem; Tina Alaeitabar; Valérie Barbe; Caroline Belser; Hélène Bergès; Catherine Bodénès; Nathalie Boudet; Christophe Boury; Aurélie Canaguier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; François Ehrenmann; Barbara Estrada-Mairey; Stéphanie Fouteau; Nicolas Francillonne; Christine Gaspin; Cécile Guichard; Christophe Klopp; Karine Labadie; Céline Lalanne; Isabelle Le Clainche; Jean-Charles Leplé; Grégoire Le Provost; Thibault Leroy; Isabelle Lesur; Francis Martin; Jonathan Mercier

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole‐genome shotgun (WGS) approach, without the use of costly and time‐consuming methods, such as fosmid or BAC clone‐based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS‐FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired‐end and mate‐pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired‐end reads and contaminants detected, resulting in a total of 17 910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


Fems Yeast Research | 2015

The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments

Isabelle Masneuf-Pomarede; Elodie Juquin; Cécile Miot-Sertier; Philippe Renault; Yec’han Laizet; Franck Salin; Hervé Alexandre; Vittorio Capozzi; Luca Cocolin; Benoit Colonna-Ceccaldi; Vasileios Englezos; Patrick Girard; Beatriz González; Albert Mas; Aspasia Nisiotou; Matthias Sipiczki; Giuseppe Spano; Chrysoula C. Tassou; Marina Bely; Warren Albertin

The yeast Candida zemplinina (Starmerella bacillaris) is frequently isolated from grape and wine environments. Its enological use in mixed fermentation with Saccharomyces cerevisiae has been extensively investigated these last few years, and several interesting features including low ethanol production, fructophily, glycerol and other metabolites production, have been described. In addition, molecular tools allowing the characterization of yeast populations have been developed, both at the inter- and intraspecific levels. However, most of these fingerprinting methods are not compatible with population genetics or ecological studies. In this work, we developed 10 microsatellite markers for the C. zemplinina species that were used for the genotyping of 163 strains from nature or various enological regions (28 vineyards/wineries from seven countries). We show that the genetic diversity of C. zemplinina is shaped by geographical localization. Populations isolated from winemaking environments are quite diverse at the genetic level: neither clonal-like behaviour nor specific genetic signature were associated with the different vineyards/wineries. Altogether, these results suggest that C. zemplinina is not under selective pressure in winemaking environments.


PLOS ONE | 2010

In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non- Model Species?

Camille Lepoittevin; Jean-Marc Frigerio; Pauline Garnier-Géré; Franck Salin; María-Teresa Cervera; Barbara Vornam; Luc Harvengt; Christophe Plomion

Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.


BMC Biology | 2013

High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination

Emilie Chancerel; Jean-Baptiste Lamy; Isabelle Lesur; Céline Noirot; Christophe Klopp; François Ehrenmann; Christophe Boury; Grégoire Le Provost; Philippe Label; Céline Lalanne; Valérie Léger; Franck Salin; Jean-Marc Gion; Christophe Plomion

BackgroundThe availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies.ResultsIn this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable.ConclusionThis study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.


PLOS ONE | 2014

Winemaking and Bioprocesses Strongly Shaped the Genetic Diversity of the Ubiquitous Yeast Torulaspora delbrueckii

Warren Albertin; Laura Chasseriaud; Guillaume Comte; Aurélie Panfili; Adline Delcamp; Franck Salin; Philippe Marullo; Marina Bely

The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼1900 years ago), and to the Neolithic era for bioprocesses (∼4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses.


Journal of Plant Physiology | 1995

Purification and Characterization of Trans-β-farnesene Synthase from Maritime Pine (Pinus pinaster Ait.) Needles

Franck Salin; Ginette Pauly; Jacqueline Charon; Michel Gleizes

Summary The trans-β-farnesene synthase has been purified from basal and middle parts of growing needles of maritime pine ( Pinus pinaster Ait.). This enzyme catalyses the conversion of farnesyl diphosphate to trans-β-farnesene, an acyclic sesquiterpene hydrocarbon. Its acidic property facilited its isolation by ionexchange chromatography. Its purification was continued on hydroxylapatite column and gel permeation and was greatly improved by dye binding chromatography. SDS-gel electrophoresis revealed a single band in the range of 45 kD for this enzyme which has been 1,030-fold purified. Trans-β-farnesene synthase requires for divalent cations with Mg 2+ preferred to Mn 2+ and for thiol reagents. Effects of inhibitors were examined and the enzyme activity was strongly affected by p-hydroxymercuribenzoic acid. The K m for farnesyl diphosphate was in the range of 5 μM and the optimum pH of activity was between 7-7.3.


BMC Plant Biology | 2010

(Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism

Raúl Herrera; Catherine Krier; Céline Lalanne; El ElHadji Maodo Ba; Alexia Stokes; Franck Salin; Thierry Fourcaud; Stéphane Claverol; Christophe Plomion

BackgroundPlants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity.ResultsWe quantified the speed of maritime pine seedlings to reorient with regard to light and gravity over 22 days. Seedlings were inclined at 15, 30 and 45 degrees with vertical plants as controls. A lateral light source illuminated the plants and stem movement over time was recorded. Depending on the initial angle of stem lean, the apical response to the lateral light source differed. In control and 15° inclined plants, the apex turned directly towards the light source after only 2 h. In plants inclined at 30° and 45°, the apex first reoriented in the vertical plane after 2 h, then turned towards the light source after 24 h. Two-dimensional gel electrophoresis coupled with mass spectrometry was then used to describe the molecular response of stem bending involved in photo- and gravi-tropism after 22 hr and 8 days of treatment. A total of 486 spots were quantitatively analyzed using image analysis software. Significant changes were determined in the protein accumulation of 68 protein spots. Early response gravitropic associated proteins were identified, which are known to function in energy related and primary metabolism. A group of thirty eight proteins were found to be involved in primary metabolism and energy related metabolic pathways. Degradation of Rubisco was implicated in some protein shifts.ConclusionsOur study demonstrates a rapid gravitropic response in apices of maritime pine seedlings inclined >30°. Little or no response was observed at the stem bases of the same plants. The primary gravitropic response is concomitant with a modification of the proteome, consisting of an over accumulation of energy and metabolism associated proteins, which may allow the stem to reorient rapidly after bending.

Collaboration


Dive into the Franck Salin's collaboration.

Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Grégoire Le Provost

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Frigerio

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexia Stokes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Bely

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

Antoine Kremer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Klopp

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge