Frantisek Supek
Genomics Institute of the Novartis Research Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frantisek Supek.
Cell Host & Microbe | 2012
Dominic Hoepfner; Case W. McNamara; Chek Shik Lim; Christian Studer; Ralph Riedl; Thomas Aust; Susan McCormack; David Plouffe; Stephan Meister; Sven Schuierer; Uwe Plikat; Nicole Hartmann; Frank Staedtler; Simona Cotesta; Esther K. Schmitt; Frank Petersen; Frantisek Supek; Richard Glynne; John A. Tallarico; Jeffrey A. Porter; Mark C. Fishman; Christophe Bodenreider; Thierry T. Diagana; N. Rao Movva; Elizabeth A. Winzeler
Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.
Current Biology | 2003
Kathryn M. Donaldson; Hongwei Yin; Nicholas Gekakis; Frantisek Supek; Claudio A. P. Joazeiro
The conserved vacuolar protein-sorting (Vps) pathway controls the trafficking of proteins to the vacuole/lysosome. Both the internalization of ubiquitylated cargo from the plasma membrane and its sorting at the late endosome via the Vps pathway depend on ubiquitin (Ub) binding motifs present in trafficking regulators. Here we report that Ub controls yet a third step in the Vps pathway. Vps9p, which promotes endosomal and Golgi-derived vesicle fusion, binds directly to Ub via a Cue1p-homologous (CUE) domain. The CUE domain is structurally related to the Ub-associated (UBA) domain. In an assay for vacuolar delivery of a transmembrane receptor fused to Ub, a Ub mutation impairing interaction with Vps9p led to a cytoplasmic block in receptor trafficking. This block resembled that of a receptor fused to wild-type Ub but expressed in a vps9-null background. Strikingly, this trafficking defect caused by a mutant Ub was rescued by deletion of the Vps9p CUE domain, indicating that lack of the CUE domain renders Vps9p independent of Ub for activation in vivo. We thus provide evidence for biochemical and genetic interactions between Ub and a novel Ub binding domain in Vps9p. Ub plays a positive role, whereas the CUE domain plays both positive and negative roles in Vps9p function in trafficking.
Journal of Biological Chemistry | 2008
Lubica Supekova; Frantisek Supek; Jong-Kook Lee; Shawn Chen; Nathanael S. Gray; John Paul Pezacki; Achim Schlapbach; Peter G. Schultz
The propagation of the hepatitis C virus (HCV) is a complex process that requires both host and viral proteins. To facilitate identification of host cell factors that are required for HCV replication, we screened a panel of small interference RNAs that preferentially target human protein kinases using an HCV replicon expressing the firefly luciferase gene as a genetic reporter. Small interference RNAs specific for three human kinases, Csk, Jak1, and Vrk1, were identified that reproducibly reduce viral RNA and viral protein levels in HCV replicon-bearing cells. Treatment of replicon cells with a small molecule inhibitor of Csk also resulted in a significant reduction in HCV RNA and proteins, further supporting a role for Csk in HCV replication. The effects of siRNAs targeting eight kinases known to be negatively regulated by Csk were then examined; knock down of one of these kinases, Fyn, resulted in up-regulation of the HCV replicon, suggesting that Csk mediates its effect on HCV replication through Fyn. This conclusion was further corroborated by demonstration that replicon cells treated with Csk inhibitor contained lower levels of the phosphorylated form of Fyn than control cells.
ACS Chemical Biology | 2012
Puiying A. Mak; Srinivasa P. S. Rao; Mai Ping Tan; Xiuhua Lin; Jason Chyba; Joann Tay; Seow Hwee Ng; Bee Huat Tan; Joseph Cherian; Jeyaraj Duraiswamy; Pablo Bifani; Vivian Lim; Boon Heng Lee; Ngai Ling Ma; David Beer; Pamela Thayalan; Kelli Kuhen; Arnab K. Chatterjee; Frantisek Supek; Richard Glynne; Jun Zheng; Helena I. Boshoff; rd Clifton E. Barry; Thomas Dick; Kevin Pethe; Luis R. Camacho
Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis therapy. Recently, the maintenance of a low level of bacterial respiration was shown to be a point of metabolic vulnerability in Mycobacterium tuberculosis. Here, we describe the development of a hypoxic model to identify compounds targeting mycobacterial respiratory functions and ATP homeostasis in whole mycobacteria. The model was adapted to 1,536-well plate format and successfully used to screen over 600,000 compounds. Approximately 800 compounds were confirmed to reduce intracellular ATP levels in a dose-dependent manner in Mycobacterium bovis BCG. One hundred and forty non-cytotoxic compounds with activity against hypoxic non-replicating M. tuberculosis were further validated. The resulting collection of compounds that disrupt ATP homeostasis in M. tuberculosis represents a valuable resource to decipher the biology of persistent mycobacteria.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Svitlana Berezhna; Lubica Supekova; Frantisek Supek; Peter G. Schultz; Ashok A. Deniz
Recent observations of RNA interference (RNAi) in the nuclei of human cells raise key questions about the extent to which nuclear and cytoplasmic RNAi pathways are shared. By directly visualizing the localization of small interfering RNA (siRNA) in live human cells, we show here that siRNA either selectively localizes in the cytoplasm or translocates into the nucleus, depending on where the silencing target RNA resides. Two siRNAs that target the small nuclear 7SK and U6 RNAs localize into the nucleus as duplexes. In contrast, an siRNA targeting the cytoplasmic hepatitis C virus replicon RNA dissociates, and only antisense strand distributes in the cytoplasm of the cells harboring the target RNA, whereas sense strand gets degraded. At the same time, both strands of the latter siRNA are distributed throughout the cytoplasm and nucleus in cells lacking the silencing target RNA. These results suggest the existence of a mechanism by which the RNAi machinery orchestrates a target-determined localization of the siRNA and the corresponding RNAi activity, and also provide evidence for formation of nuclear-programmed active RNA induced silencing complexes directly in the nucleus.
Nature | 2016
Shilpi Khare; Advait Nagle; Agnes Biggart; Yin H. Lai; Fang Liang; Lauren C. Davis; S. Whitney Barnes; Casey J. N. Mathison; Elmarie Myburgh; Mu-Yun Gao; J. Robert Gillespie; Xianzhong Liu; Jocelyn L. Tan; Monique Stinson; Ianne Rivera; Jaime Ballard; Vince Yeh; Todd Groessl; Hazel X. Y. Koh; John D. Venable; Badry Bursulaya; Michael B. Shapiro; Pranab Mishra; Glen Spraggon; Ansgar Brock; Jeremy C. Mottram; Frederick S. Buckner; Srinivasa P. S. Rao; Ben G. Wen; John R. Walker
Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.
PLOS Pathogens | 2015
Shilpi Khare; Steven L. Roach; S. Whitney Barnes; Dominic Hoepfner; John R. Walker; Arnab K. Chatterjee; R. Jeffrey Neitz; Michelle R. Arkin; Case W. McNamara; Jaime Ballard; Yin Lai; Yue Fu; Valentina Molteni; Vince Yeh; James H. McKerrow; Richard Glynne; Frantisek Supek
Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1) in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50) of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.
Antimicrobial Agents and Chemotherapy | 2015
Shilpi Khare; Xianzhong Liu; Monique Stinson; Ianne Rivera; Todd Groessl; Tove Tuntland; Vince Yeh; Ben Wen; Valentina Molteni; Richard Glynne; Frantisek Supek
ABSTRACT Two CYP51 inhibitors, posaconazole and the ravuconazole prodrug E1224, were recently tested in clinical trials for efficacy in indeterminate Chagas disease. The results from these studies show that both drugs cleared parasites from the blood of infected patients at the end of the treatment but that parasitemia rebounded over the following months. In the current study, we sought to identify a dosing regimen of posaconazole that could permanently clear Trypanosoma cruzi from mice with experimental Chagas disease. Infected mice were treated with posaconazole or benznidazole, an established Chagas disease drug, and parasitological cure was defined as an absence of parasitemia recrudescence after immunosuppression. Twenty-day therapy with benznidazole (10 to 100 mg/kg of body weight/day) resulted in a dose-dependent increase in antiparasitic activity, and the 100-mg/kg regimen effected parasitological cure in all treated mice. In contrast, all mice remained infected after a 25-day treatment with posaconazole at all tested doses (10 to 100 mg/kg/day). Further extension of posaconazole therapy to 40 days resulted in only a marginal improvement of treatment outcome. We also observed similar differences in antiparasitic activity between benznidazole and posaconazole in acute T. cruzi heart infections. While benznidazole induced rapid, dose-dependent reductions in heart parasite burdens, the antiparasitic activity of posaconazole plateaued at low doses (3 to 10 mg/kg/day) despite increasing drug exposure in plasma. These observations are in good agreement with the outcomes of recent phase 2 trials with posaconazole and suggest that the efficacy models combined with the pharmacokinetic analysis employed here will be useful in predicting clinical outcomes of new drug candidates.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Lubica Supekova; Frantisek Supek; John E. Greer; Peter G. Schultz
During the course of evolution, a massive reduction of the mitochondrial genome content occurred that was associated with transfer of a large number of genes to the nucleus. To further characterize factors that control the mitochondrial gene transfer/retention process, we have investigated the barriers to transfer of yeast COX2, a mitochondrial gene coding for a subunit of cytochrome c oxidase complex. Nuclear-recoded Saccharomyces cerevisiae COX2 fused at the amino terminus to various alternative mitochondrial targeting sequences (MTS) fails to complement the growth defect of a yeast strain with an inactivated mitochondrial COX2 gene, even though it is expressed in cells. Through random mutagenesis of one such hybrid MTS-COX2, we identified a single mutation in the first Cox2 transmembrane domain (W56 → R) that (i) results in the cellular expression of a Cox2 variant with a molecular mass indicative of MTS cleavage, which (ii) supports growth of a cox2 mutant on a nonfermentable carbon source, and that (iii) partially restores cytochrome c oxidase-specific respiration by the mutant mitochondria. COX2W56R can be allotopically expressed with an MTS derived from S. cerevisiae OXA1 or Neurospora crassa SU9, both coding for hydrophobic mitochondrial proteins, but not with an MTS derived from the hydrophilic protein Cox4. In contrast to some other previously transferred genes, allotopic COX2 expression is not enabled or enhanced by a 3′-UTR that localizes mRNA translation to the mitochondria, such as yeast ATP23′-UTR. Application of in vitro evolution strategies to other mitochondrial genes might ultimately lead to yeast entirely lacking the mitochondrial genome, but still possessing functional respiratory capacity.
Cellular Physiology and Biochemistry | 1992
Nathan Nelson; Carmen Beltrán; Frantisek Supek; Hannah Nelson
The vacuolar system of eukaryotic cells contains a large number of organelles that are primarily energized by an H+-ATPase that was named V-ATPase. Several genes encoding subunits of the en