Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred K. Duennebier is active.

Publication


Featured researches published by Fred K. Duennebier.


Geological Society of America Bulletin | 1982

Offscraping and underthrusting of sediment at the deformation front of the Barbados Ridge: Deep Sea Drilling Project Leg 78A

J. Casey Moore; Bernard Biju-Duval; James A Bergen; Grant Blackington; George E. Claypool; Darrel S. Cowan; Fred K. Duennebier; Rodolfo T. Guerra; Christoph Hemleben; Donald M. Hussong; Michael S. Marlow; James H. Natland; Carol J. Pudsey; G. W. Renz; Marc Tardy; Mark E. Willis; Douglas Wilson; Audrey A. Wright

On Leg 78A we drilled Sites 541 and 542 into the seaward edge of the Barbados Ridge complex, and Site 543 into the adjacent oceanic crust. The calcareous ooze, marls, and muds at Sites 541 and 542 are lithologically and paleontologically similar to the upper strata at Site 543 and are apparently offscraped from the down-going plate. A repetition of Miocene over Pliocene sediments at Site 541 documents major thrust or reverse faulting during offscraping. The hemipelagic to pelagic deposits offscraped in the Leg 78A area include no terrigenous sand beds, but they contain numerous Neogene ash layers derived from the Lesser Antilles Arc. Hence, this sequence is quite unlike the siliciclastic-dominated terranes on land that are inferred to be accretionary complexes. The structural fabric of the offscraped deposits at Sites 541 and 542 is disharmonic, probably along a decollement, with an underlying acoustically layered sequence, suggesting selective underthrusting of the latter. The acoustically layered sequence correlates seismically with pelagic strata cored at Site 543 on the incoming oceanic plate. Cores recovered from the possible decollement surface at both Sites 541 and 542 show scaly foliation and stratal disruption. Approximately lithostatic fluid pressure measured in the possible decollement zone probably facilitates the underthrusting of the pelagic sediments beneath the offscraped deposits. In the incoming section, a transition from smectitic to radiolarian mud with associated increases in density and strength probably controls the structural break between offscraped and underthrust strata. In the Leg 78A area, the underthrust pelagic section can be traced seismically at least 30 km arcward of the deformation front beneath the Barbados Ridge complex.


Marine Geophysical Researches | 1995

Fidelity of ocean bottom seismic observations

Fred K. Duennebier; George H. Sutton

The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.


Eos, Transactions American Geophysical Union | 2000

Hawaii‐2 observatory pioneers opportunities for remote instrumentation in ocean studies

R. Butler; Alan D. Chave; Fred K. Duennebier; Dana R. Yoerger; Robert A. Petitt; David W. Harris; F. B. Wooding; Andrew D. Bowen; John Bailey; James Jolly; E. Hobart; John A. Hildebrand; A. H. Dodeman

Beneath 5000 m of water midway between Hawaii and California, the Hawaii-2 Observatory (H20) rests on the seafloor (Figure 1). Telemetry and power come to this pioneer, deep-ocean scientific observatory via a retired telephone cable, Hawaii-2, donated by AT&T to the Incorporated Research Institutions for Seismology (IRIS) Consortium for the benefit of the scientific community. H20 is the first Global Seismographic Network (GSN) station on the seafloor.With a suite of wet-mateable connectors on a junction box (j-box), H20 offers marine scientists a new opportunity to deploy and operate remote instrumentation in the middle of the ocean.


Earth Moon and Planets | 1973

Lunar structure and dynamics - results from the apollo passive seismic experiment

Gary V. Latham; Maurice Ewing; James Dorman; Yosio Nakamura; Frank Press; Nafi Toksőz; George H. Sutton; Fred K. Duennebier; David Lammlein

Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s−1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s−1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.


Earth Moon and Planets | 1972

Moonquakes and lunar tectonism

Gary V. Latham; Maurice Ewing; James Dorman; David Lammlein; Frank Press; Naft Toksőz; George H. Sutton; Fred K. Duennebier; Yosio Nakamura

AbstractWith the succesful installation of a geophysical station at Hadley Rille, on July 31, 1971, on the Apollo 15 mission, and the continued operation of stations 12 and 14 approximately 1100 km SW, the Apollo program for the first time achieved a network of seismic stations on the lunar surface. A network of at least three stations is essential for the location of natural events on the Moon. Thus, the establishment of this network was one of the most important milestones in the geophysical exploration of the Moon.The major discoveries that have resulted to date from the analysis of seismic data from this network can be summarized as follows:(1)Lunar seismic signals differ greatly from typical terrestrial seismic signals. It now appears that this can be explained almost entirely by the presence of a thin dry, heterogeneous layer which blankets the Moon to a probable depth of few km with a maximum possible depth of about 20 km. Seismic waves are highly scattered in this zone. Seismic wave propagation within the lunar interior, below the scattering zone, is highly efficient. As a result, it is probable that meteoroid impact signals are being received from the entire lunar surface.(2)The Moon possesses a crust and a mantle, at least in the region of the Apollo 12 and 14 stations. The thickness of the crust is between 55 and 70 km and may consist of two layers. The contrast in elastic properties of the rocks which comprise these major structural units is at least as great as that which exists between the crust and mantle of the earth. (See Toksőzet al., p. 490, for further discussion of seismic evidence of a lunar crust.)(3)Natural lunar events detected by the Apollo seismic network are moonquakes and meteoroid impacts. The average rate of release of seismic energy from moonquakes is far below that of the Earth. Although present data do not permit a completely unambiguous interpretation, the best solution obtainable places the most active moonquake focus at a depth of 800 km; slightly deeper than any known earthquake. These moonquakes occur in monthly cycles; triggered by lunar tides. There are at least 10 zones within which the repeating moonquakes originate.(4)In addition to the repeating moonquakes, moonquake ‘swarms’ have been discovered. During periods of swarm activity, events may occur as frequently as one event every two hours over intervals lasting several days. The source of these swarms is unknown at present. The occurrence of moonquake swarms also appears to be related to lunar tides; although, it is too soon to be certain of this point. These findings have been discussed in eight previous papers (Lathamet al., 1969, 1970, 1971) The instrument has been described by Lathamet al. (1969) and Sutton and Latham (1964). The locations of the seismic stations are shown in Figure 1.


IEEE Journal of Oceanic Engineering | 2002

underwThe Hawaii-2 Observatory seismic system

Fred K. Duennebier; David W. Harris; James Jolly; James Babinec; David Copson; Kurt Stiffel

The Hawaii-2 Observatory seismic system is currently transmitting high-quality seismic data from the ocean floor in the central NE Pacific Ocean through Hawaii to the IRIS Data Management Center. The system includes broad-band seismic, geophone, acoustic, and ocean current sensors. The seismic sensors are buried about 0.4 m below the ocean floor to improve coupling to the ocean bottom and to reduce noise levels. The system can be remotely calibrated, leveled and locked, and gains can be changed on command from shore. Data are temporarily stored in the seismic package for retransmission as needed to correct for transmission problems and to prevent loss of data. Data generated are valuable for studies of the Earths structure and the dynamics of earthquakes.


IEEE Journal of Oceanic Engineering | 2002

HUGO: the Hawaii Undersea Geo-Observatory

Fred K. Duennebier; David W. Harris; James Jolly; Jackie Caplan-Auerbach; Robert Jordan; David Copson; Kurt Stiffel; James Babinec; Jeff Bosel

The Hawaii Undersea Geo-Observatory, HUGO, was installed with the intent of supplying infrastructure for researchers interested in studies of undersea volcanism and associated phenomena at Loihi, the newest volcano of the Hawaiian chain. Much like an astronomical observatory, HUGO is a facility where scientists can perform experiments while sharing resources with others. The main components of HUGO are the shore station, supplying power to the observatory and recording data; the main cable-an electro-optical cable connecting the shore station to the summit of Loihi; the Junction box-the power distribution and data collection center on Loihi; multiplexing (mux) nodes-secondary distribution points; and experiments supplied by scientists. HUGO can potentially supply electrical power, command capability and real-time data service to more than 100 instruments connected and removed on the ocean floor by submersible or ROV. HUGO was installed on October 11, 1997, but the main cable developed an electrical short circuit to sea water on April 26, 1998, and a new cable must be obtained and installed before routine operations can continue. Despite the failure, several important tasks have been accomplished, including: 1) the successful small-ship lay of the 47-km electro-optical cable from the Island of Hawaii to the summit of Loihi submarine volcano; 2) installation and servicing of the Junction box; 3) successful operation of electro-optical connectors on the ocean floor by submersible; 4) installation and removal of experiments on the ocean floor; 5) transmission of power and commands from shore to experiments installed at HUGO; 6) transmission of high-rate, high-fidelity data from the summit of Loihi to shore in real time; and 7) recording of volcanic, earthquake, biological, ocean wave and ship noises for a period of three months. This paper provides a general description of the HUGO system and its history of operation.


Marine Geophysical Researches | 1987

A permanent seismic station beneath the ocean bottom

David Harris; Robert K. Cessaro; Fred K. Duennebier; David A. Byrne

The Hawaii Institute of Geophysics began development of the Ocean Subbottom Seisometer (OSS) system in 1978, and OSS systems were installed in four locations between 1979 and 1982. The OSS system is a permanent, deep ocean borehole seismic recording system composed of a borehole sensor package (tool), an electromechanical cable, recorder package, and recovery system. Installed near the bottom of a borehole (drilled by the D/V Glomar Challenger), the tool contains three orthogonal, 4.5-Hz geophones, two orthogonal tilt meters; and a temperature sensor. Signals from these sensors are multiplexed, digitized (with a floating point technique), and telemetered through approximately 10 km of electromechanical cable to a recorder package located near the ocean bottom. Electrical power for the tool is supplied from the recorder package. The digital seismic signals are demultiplexed, converted back to analog form, processed through an automatic gain control (AGC) circuit, and recorded along with a time code on magnetic tape cassettes in the recorder package. Data may be recorded continuously for up to two months in the self-contained recorder package. Data may also be recorded in real time (digital formal) during the installation and subsequent recorder package servicing. The recorder package is connected to a submerged recovery buoy by a length of bouyant polypropylene rope. The anchor on the recovery buoy is released by activating either of the acoustical command releases. The polypropylene rope may also be seized with a grappling hook to effect recovery. The recorder package may be repeatedly serviced as long as the tool remains functionalA wide range of data has been recovered from the OSS system. Recovered analog records include signals from natural seismic sources such as earthquakes (teleseismic and local), man-made seismic sources such as refraction seismic shooting (explosives and air cannons), and nuclear tests. Lengthy continuous recording has permitted analysis of wideband noise levels, and the slowly varying parameters, temperature and tilt.


oceans conference | 2011

ALOHA cabled observatory installation

Bruce M. Howe; Roger Lukas; Fred K. Duennebier; David M. Karl

At 10:23 am on 6 June 2011, the ALOHA Cabled Observatory (ACO) saw “first light,” extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. The system was installed using ROV Jason operated from the R/V Kilo Moana. Here we provide an overview of the system and instrumentation, the installation operation, and a sample of initial data. Sensors now connected to the ACO provide live video of the surrounding seafloor, sound from local and distant sources, and measure currents, pressure, temperature, and salinity.


Journal of the Acoustical Society of America | 2011

The Aloha Cabled Observatory.

Lora J. Van Uffelen; Fred K. Duennebier; Roger Lukas; Bruce M. Howe

Sustained observation of the ocean is difficult. Ocean science requires new and varied ways to observe the ocean, each with its own strengths and weaknesses, in order to advance our understanding and lay the foundations for predictive models and their applications.

Collaboration


Dive into the Fred K. Duennebier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter D. Bromirski

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Lukas

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Bruce M. Howe

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

David Lammlein

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Frank Press

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gary V. Latham

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge