Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Delmas is active.

Publication


Featured researches published by Frédéric Delmas.


Plant Physiology | 2008

Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis

Marcus A. Samuel; Yashwanti Mudgil; Jennifer N. Salt; Frédéric Delmas; Andrea Chilelli; Daphne R. Goring

The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ABI3 controls embryo degreening through Mendel's I locus

Frédéric Delmas; Subramanian Sankaranarayanan; Srijani Deb; Ellen E. Widdup; Céline Bournonville; Norbert Bollier; Julian G. B. Northey; Peter McCourt; Marcus A. Samuel

Significance Occurrence of mature green seeds in oil-seed crops such as canola and soybean causes severe losses in revenue. Retention of chlorophyll in seeds can be an undesirable trait as it affects seed maturation, seed oil, and meal quality. We show that the abscisic acid (ABA, plant hormone) dependent transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3), confers seed degreening by regulating Mendel’s stay-green genes. This study unveils a new role for ABI3 in removal of seed chlorophyll in addition to its functions in embryo maturation and conferring desiccation tolerance. This pathway could be manipulated to tackle the cold-induced green seed problem in oil-seed crops. Chlorophyll (chl) is essential for light capture and is the starting point that provides the energy for photosynthesis and thus plant growth. Obviously, for this reason, retention of the green chlorophyll pigment is considered a desirable crop trait. However, the presence of chlorophyll in mature seeds can be an undesirable trait that can affect seed maturation, seed oil quality, and meal quality. Occurrence of mature green seeds in oil crops such as canola and soybean due to unfavorable weather conditions during seed maturity is known to cause severe losses in revenue. One recently identified candidate that controls the chlorophyll degradation machinery is the stay-green gene, SGR1 that was mapped to Mendel’s I locus responsible for cotyledon color (yellow versus green) in peas. A defect in SGR1 leads to leaf stay-green phenotypes in Arabidopsis and rice, but the role of SGR1 in seed degreening and the signaling machinery that converges on SGR1 have remained elusive. To decipher the gene regulatory network that controls degreening in Arabidopsis, we have used an embryo stay-green mutant to demonstrate that embryo degreening is achieved by the SGR family and that this whole process is regulated by the phytohormone abscisic acid (ABA) through ABSCISIC ACID INSENSITIVE 3 (ABI3); a B3 domain transcription factor that has a highly conserved and essential role in seed maturation, conferring desiccation tolerance. Misexpression of ABI3 was sufficient to rescue cold-induced green seed phenotype in Arabidopsis. This finding reveals a mechanistic role for ABI3 during seed degreening and thus targeting of this pathway could provide a solution to the green seed problem in various oil-seed crops.


Journal of Biological Chemistry | 2006

Cyclin-dependent Kinase (CDK) Inhibitors Regulate the CDK-Cyclin Complex Activities in Endoreduplicating Cells of Developing Tomato Fruit

Badia Bisbis; Frédéric Delmas; Jérôme Joubès; Adrien Sicard; Michel Hernould; Dirk Inzé; Armand Mouras; Christian Chevalier

The jelly-like locular (gel) tissue of tomato fruit is made up of large thin-walled and highly vacuolized cells. The development of the gel tissue is characterized by the arrest of mitotic activities, the inhibition of cyclin-dependent kinase A (CDKA) activity, and numerous rounds of nuclear DNA endoreduplication. To decipher the molecular determinants controlling these developmental events, we investigated the putative involvement of CDK inhibitors (p27Kip-related proteins, or KRPs) during the endoreduplication process. Two cDNAs, LeKRP1 and LeKRP2, encoding tomato CDK inhibitors were isolated. The LeKRP1 and LeKRP2 transcript expression was shown to be enhanced in the differentiating cells of the gel undergoing endoreduplication. At the translational level, LeKRP1 was shown to accumulate in the gel tissue and to participate in the inhibition of the CDK-cyclin kinase activities occurring in endoreduplicating cells of the gel tissue. We here propose that LeKRP1 participates in the control of both the cell cycle and the endoreduplication cycle.


Journal of Experimental Botany | 2008

The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation

Frédéric Delmas; Martial Séveno; Julian G. B. Northey; Michel Hernould; Patrice Lerouge; Peter McCourt; Christian Chevalier

Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specifically the RG-II structure in its sugar composition and assess the consequences on the function of RG-II in cell wall and its relationship with growth, Arabidopsis null mutants were sought in the genes encoding Kdo-8-P synthase. Here, the isolation and characterization of one null mutant for the isoform 1 (AtkdsA1-S) and two distinct null mutants for the isoform 2 of Arabidopsis Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) are described. Evidence is provided that AtkdsA2 gene expression is preferentially associated with plantlet organs displaying a meristematic activity, and that it accounts for 75% of the mRNAs to be translated into Kdo-8-P synthase. Furthermore, this predominant expression of AtKDSA2 over AtKDSA1 was confirmed by quantification of the cytosolic Kdo content in the mutants, in a variety of ecotypes. The inability to identify a double knockout mutant originated from pollen abortions, due to the inability of haploid pollen of the AtkdsA1- AtkdsA2- genotype to form an elongated pollen tube properly and perform fertilization.


Plant Molecular Biology | 2004

Molecular characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum Mill.)

Nathalie Gonzalez; Michel Hernould; Frédéric Delmas; Frédéric Gévaudant; Philippe Duffé; Mathilde Causse; Armand Mouras; Christian Chevalier

Early fruit development in tomato (Lycopersicon esculentum Mill.) proceeds in two distinct phases of growth that comprise cell division and cell expansion, respectively. In pericarp and the jelly like locular tissue of tomato fruit, the transition between cell division to cell expansion is characterized by the arrest of mitotic activity, numerous rounds of nuclear DNA endoreduplication and the inhibition of Cyclin-Dependent Kinase A (CDKA) activity. To investigate whether the WEE1 kinase may play a role during the endoreduplication process, we isolated and characterized the tomato homologue for WEE1. The LeWEE1 gene consisted of 10 exons with a predicted 510 amino acid-long protein. The accumulation of the corresponding transcripts was associated with mitotically active organs: developing fruits, seeds and roots. Interestingly, LeWEE1was expressed in the jelly like locular tissue concomitant with endoreduplication during fruit development. Using tobacco BY-2 synchronized cells, we showed that the WEE1 gene expression is cell-cycle regulated with a maximum transcript accumulation at S phase. Our data indicate the putative dual contribution of LeWEE1 in the classical cell cycle and the endocycle.


Journal of Experimental Botany | 2015

Fruit growth-related genes in tomato

Lamia Azzi; Cynthia Deluche; Frédéric Gévaudant; Nathalie Frangne; Frédéric Delmas; Michel Hernould; Christian Chevalier

Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and expansion. As fruit growth is mainly driven by cell expansion, cells from the (fleshy) pericarp tissue become highly polyploid according to the endoreduplication process, reaching a DNA content rarely encountered in other plant species (between 2C and 512C). Both cell division and cell expansion are under the control of complex interactions between hormone signalling and carbon partitioning, which establish crucial determinants of the quality of ripe fruit, such as the final size, weight, and shape, and organoleptic and nutritional traits. This review describes the genes known to contribute to fruit growth in tomato.


BMC Biology | 2012

The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis

Shelley Lumba; Yuichiro Tsuchiya; Frédéric Delmas; Jodi Hezky; Nicholas J. Provart; Qing Shi Lu; Peter McCourt; Sonia Gazzarrini

BackgroundThe embryonic temporal regulator FUSCA3 (FUS3) plays major roles in the establishment of embryonic leaf identity and the regulation of developmental timing. Loss-of-function mutations of this B3 domain transcription factor result in replacement of cotyledons with leaves and precocious germination, whereas constitutive misexpression causes the conversion of leaves into cotyledon-like organs and delays vegetative and reproductive phase transitions.ResultsHerein we show that activation of FUS3 after germination dampens the expression of genes involved in the biosynthesis and response to the plant hormone ethylene, whereas a loss-of-function fus3 mutant shows many phenotypes consistent with increased ethylene signaling. This FUS3-dependent regulation of ethylene signaling also impinges on timing functions outside embryogenesis. Loss of FUS3 function results in accelerated vegetative phase change, and this is again partially dependent on functional ethylene signaling. This alteration in vegetative phase transition is dependent on both embryonic and vegetative FUS3 function, suggesting that this important transcriptional regulator controls both embryonic and vegetative developmental timing.ConclusionThe results of this study indicate that the embryonic regulator FUS3 not only controls the embryonic-to-vegetative phase transition through hormonal (ABA/GA) regulation but also functions postembryonically to delay vegetative phase transitions by negatively modulating ethylene-regulated gene expression.


Plant Physiology | 2003

The Gene Expression and Enzyme Activity of Plant 3-Deoxy-D-Manno-2-Octulosonic Acid-8-Phosphate Synthase Are Preferentially Associated with Cell Division in a Cell Cycle-Dependent Manner

Frédéric Delmas; Johann Petit; Jérôme Joubès; Martial Séveno; Thomas Paccalet; Michel Hernould; Patrice Lerouge; Armand Mouras; Christian Chevalier

3-Deoxy-d-manno-2-octulosonic acid-8-phosphate (Kdo-8-P) synthase catalyzes the condensation of phosphoenolpyruvate with d-arabinose-5-phosphate to yield Kdo-8-P. Kdo-8-P is the phosphorylated precursor of Kdo, a rare sugar only found in the rhamnogalacturonan II pectic fraction of the primary cell walls of higher plants and of cell wall polysaccharides of some green algae. A cDNA named LekdsA (accession no. AJ294902) encoding tomato (Lycopersicon esculentum) Kdo-8-P synthase has been isolated. The recombinant protein rescued a kdsA thermosensitive mutant of Salmonella typhimurium impaired in the synthesis of a functional Kdo-8-P synthase. Using site-directed mutagenesis of LekdsA cDNA, the tomato Kdo-8-P synthase was shown to possess the same essential amino acids that form the active sites in the bacterial enzymes. The tomato kdsA gene expression and the relevant Kdo-8-P synthase activity were preferentially associated to dividing cells, in the course of the early development of tomato fruit and in meristematic tissues. Furthermore, the transcription of the kdsA gene was found to oscillate during the cell cycle in tobacco (Nicotiana tabacum) Bright-Yellow 2 synchronized cells with a maximum during mitosis.


Glycobiology | 2010

Characterization of a putative 3-deoxy-d-manno-2-octulosonic acid (Kdo) transferase gene from Arabidopsis thaliana

Martial Séveno; Emilie Séveno-Carpentier; Aline Voxeur; Laurence Menu-Bouaouiche; Christophe Rihouey; Frédéric Delmas; Christian Chevalier; Azeddine Driouich; Patrice Lerouge

The structures of the pectic polysaccharide rhamnogalacturonan II (RG-II) pectin constituent are remarkably evolutionary conserved in all plant species. At least 12 different glycosyl residues are present in RG-II. Among them is the seldom eight-carbon sugar 3-deoxy-d-manno-octulosonic acid (Kdo) whose biosynthetic pathway has been shown to be conserved between plants and Gram-negative bacteria. Kdo is formed in the cytosol by the condensation of phosphoenol pyruvate with d-arabinose-5-P and then activated by coupling to cytidine monophosphate (CMP) prior to its incorporation in the Golgi apparatus by a Kdo transferase (KDTA) into the nascent polysaccharide RG-II. To gain new insight into RG-II biosynthesis and function, we isolated and characterized null mutants for the unique putative KDTA (AtKDTA) encoded in the Arabidopsis genome. We provide evidence that, in contrast to mutants affecting the RG-II biosynthesis, the extinction of the AtKDTA gene expression does not result in any developmental phenotype in the AtkdtA plants. Furthermore, the structure of RG-II from the null mutants was not altered and contained wild-type amount of Rha-alpha(1-5)Kdo side chain. The cellular localization of AtKDTA was investigated by using laser scanning confocal imaging of the protein fused to green fluorescent protein. In agreement with its cellular prediction, the fusion protein was demonstrated to be targeted to the mitochondria. These data, together with data deduced from sequence analyses of higher plant genomes, suggest that AtKDTA encodes a putative KDTA involved in the synthesis of a mitochondrial not yet identified lipid A-like molecule rather than in the synthesis of the cell wall RG-II.


The Plant Cell | 2018

At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato

Norbert Bollier; Adrien Sicard; Julie Leblond; David Latrasse; Nathalie Gonzalez; Frédéric Gévaudant; Moussa Benhamed; Cécile Raynaud; Michael Lenhard; Christian Chevalier; Michel Hernould; Frédéric Delmas

The adaptor proteins AtMIF2 and SlIMA regulate floral meristem termination in Arabidopsis and tomato by joining KNUCKLES, TOPLESS, and a histone deacetylase to repress WUSCHEL gene expression. In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL (WUS), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato (Solanum lycopersicum), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SlWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size.

Collaboration


Dive into the Frédéric Delmas's collaboration.

Top Co-Authors

Avatar

Christian Chevalier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armand Mouras

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Gévaudant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martial Séveno

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Joubès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge