Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick D. Pinkerton is active.

Publication


Featured researches published by Frederick D. Pinkerton.


Biochemical and Biophysical Research Communications | 1988

Enzymatic formation and chemical synthesis of an active metabolite of 3β-hydroxy-5α-cholest-8(14)-en-15-one, a potent regulator of cholesterol metabolism☆

George J. Schroepfer; Hong-Seok Kim; Janice L. Vermilion; Thomas W. Stephens; Frederick D. Pinkerton; Dolores H. Needleman; William K. Wilson; Jan St. Pyrek

The enzymatic (rat liver mitochondria) conversion of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one to 5 alpha-cholest-8(14)-ene-3 beta,26-diol-15-one is described. The enzymatic product was judged, on the basis of IH and 13C NMR studies, to be a 4:1 mixture of its 25R and 25S isomers. (25R)-5 alpha-Cholest-8(14)-ene-3 beta,26-diol-15-one was prepared through a five-step synthesis from (25R)-26-hydroxycholesterol. The (25R) isomer of the new compound was found to be highly active in the suppression of the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured mammalian cells and to inhibit the esterification of cholesterol in jejunal microsomes.


Chemistry and Physics of Lipids | 1988

Inhibitors of sterol synthesis. Studies of the metabolism of 5α-cholest-8(14)-en-3β-ol-15-one in Chinese hamster ovary cells and its effects on activities of early enzymes in cholesterol biosynthesis

Thomas N. Pajewski; Frederick D. Pinkerton; Larry R. Miller; George J. Schroepfer

The metabolism of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one (I) has been studied in Chinese hamster ovary (CHO-K1) cells which were maintained in a lipid-deficient medium. The incorporation of I into the cells was linear with respect to sterol concentration in the medium over the ranges of concentrations studied and was more than 3.5 times that of the uptake of cholesterol. The results of detailed chromatographic analyses of the lipids recovered from the cells after 6 h of incubation with [2,4-3H]I (0.5 microM or 6.0 microM) indicated that most of the 3H was associated with free I. Considerably lesser amounts of the 3H was associated with esters of I. No formation of [3H]cholesterol or [3H]cholesteryl esters (or other C27 monohydroxysterols) from labeled I was observed. The labeled material with the chromatographic behavior of the esters of I gave, after mild alkaline hydrolysis, the free 15-ketosterol which was characterized by the results of chromatographic and cocrystallization studies. Upon transfer of the CHO-K1 cells from a culture medium containing 8% newborn calf serum to the same medium containing 8% lipid-deficient newborn calf serum, increases in the levels of activity of cytosolic acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase and of HMG-CoA reductase were observed. These increases were blocked by the addition of I at a concentration of 1.0 microM. I (1.0 microM) also caused a decrease in the levels of activity of the three enzymes in cells previously grown in medium containing lipid-deficient serum. These results demonstrate that I not only affects the enzymatic reduction of HMG-CoA but also the enzymatic formation of this key intermediate in cholesterol biosynthesis.


Steroids | 1994

Inhibitors of sterol synthesis. Effects of fluorine substitution at carbon atom 25 of cholesterol on its spectral and chromatographic properties and on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells.

William K. Wilson; Shankar Swaminathan; Frederick D. Pinkerton; Nicolas Gerst; George J. Schroepfer

25-Fluorocholesterol (III) was prepared by treatment of 25-hydroxycholesterol (IV) with hydrogen fluoride-pyridine. Compounds III, IV, and cholesterol (I) were fully characterized by 1H and 13C NMR, and stereochemical assignments were established for the C-22 and C-23 protons. The side-chain proton assignments, which apply to most other sterols with a saturated eight-carbon side chain, were based on conformational analysis and comparisons with NMR data for 25,26,26,26,27,27,27-heptafluorocholesterol (II). The chromatographic behavior of I, II, and III were compared on thin-layer chromatography, high performance liquid chromatography, and gas chromatography. Major fragment ions in electron-impact mass spectra of III were analogous to ions of either cholesterol or desmosterol, and a similar analogy was observed for the trimethylsilyl ethers. The 25-hydroxysterol IV and the 25-fluorosterol III differed markedly in their effects on the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. Whereas 25-hydroxycholesterol caused a approximately 66% lowering of reductase activity in cells at 0.1 microM, the 25-fluorosterol III had no effect at this concentration.


Biochemical and Biophysical Research Communications | 1992

Synergistic action of two oxysterols in the lowering of HMG-CoA reductase activity in cho-K1 cells

Frederick D. Pinkerton; Ronald P. Pelley; George J. Schroepfer

3 beta-Hydroxy-5 alpha-cholest-8(14)-en-15-one (I) and (25R)-26-hydroxycholesterol (II), both potent regulators of sterol biosynthesis, have been found to show synergism in the reduction of the levels of HMG-CoA reductase activity in CHO-K1 cells. When equimolar concentrations of I and II were added in combination, synergistic reduction (p less than 0.0001) of enzyme activity was observed at total oxysterol concentrations of 0.1 microM, 0.2 microM, and 0.5 microM. Maximal synergistic effect in the lowering of reductase activity (28% greater than predicted) was observed at 0.1 microM total oxysterol concentration. Five additional experiments conducted with 50 nM oxysterols confirmed the synergistic effect at 0.1 microM total sterol concentration. These results suggest that the in vivo importance of I and II may be greater than that anticipated on the basis of the concentrations of the individual sterols.


Chemistry and Physics of Lipids | 1992

Inhibitors of sterol synthesis. Chemical synthesis and spectral properties of (25R)-5α-cholest-8(14)-ene-3β,15β,26-triol, a potential metabolite of 3β-hydroxy-5α-cholest-8(14)-en-15-one and its effects on 3-hydroxy-3-methylglutaryl-coenzyme A reductase in CHO-K1 cells

Shankar Swaminathan; Frederick D. Pinkerton; William K. Wilson; George J. Schroepfer

Abstract (25 R )-5α-Cholest-8(14)-ene-3β,15β,26-triol ( III ) was prepared by reduction of (25R)-3β,26-diacetoxy-5α-cholest-8(14)-en-15-one with sodium borohydride followed by treatment of the crude product with lithium aluminium hydride. The trihydroxysterol III , a potential metabolite of 3β-hydroxy-5α-cholest-8(14)-en-15-one, was characterized by the results of mass spectral studies and by nuclear magnetic resonance (NMR) spectroscopy. Full 1 H and 13 C NMR assignments for III and 5α-cholest-8(14)-ene-3β,15β-diol are given and used to establish the structure of III . The triol was found to be very potent in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Chinese hamster ovary cells.


Chemistry and Physics of Lipids | 1992

Inhibitors of sterol synthesis. Chemical synthesis of 7α-ethyl and 16α-ethyl derivatives of Δ8(14)-15-oxygenated sterols and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase in CHO-K1 cells

Hong-Seok Kim; William K. Wilson; Nanda Duhé Kirkpatrick; Frederick D. Pinkerton; Shankar Swaminathan; Mark D. Hylarides; George J. Schroepfer

Abstract The enolate of 3β-hydroxy-5α-cholest-8(14)-en-15-one (II), formed upon treatment of II with potassium tert-butoxide in tert-butanol, was alkylated with ethyl iodide. In addition to the major products, 3β-hydroxy-14α-ethyl-5α-cholest-7-en-15-one and its 3β-ethyl ether, small amounts of 3β-hydroxy-7α-ethyl-5α-cholest-8(14)-en-15-one (V), 3β-hydroxy-16α-ethyl-5α-cholest-8(14)-en-15-one (VI) and the 3β-ethyl ether of VI were isolated. When the enolate of II was formed by treatment with lithium diisopropylamide in tetrahydrofuran, the same alkylation furnished VI as the major product. Reduction of VI with lithium aluminum hydride gave 16α-ethyl-5α-cholest-8(14)-ene-3β,15α-diol (IX) and its 15β epimer X, which were separated by column chromatography. Full 1H and 13C nuclear magnetic resonance (NMR) assignments, augmented by nuclear Overhauser effect difference spectra for VI, established the stereochemistry of these diols at C-15 and C-16. The NMR results indicate that the 16α-ethyl group affects the side-chain conformation. The effects of II, V, VI, IX and X on the levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity were studied in CHO-K1 cells. With the exception of IX, each of the compounds reduced the levels of HMG-CoA reductase activity. The order of potency with respect to suppression of the elevated levels of HMG-CoA reductase activity induced by transfer of the cells to lipid-deficient medium, was II >V >VI >X.


Chemistry and Physics of Lipids | 1998

Sterol synthesis. Synthesis of 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one and its effects on HMG-CoA reductase activity in Chinese hamster ovary cells, on ACAT activity in rat jejunal microsomes, and serum cholesterol levels in rats.

Jeffery N Carroll; Frederick D. Pinkerton; Xiangdong Su; Nicolas Gerst; William K. Wilson; George J. Schroepfer

3 beta-Hydroxycholest-5-en-7-one (I; 7-ketocholesterol) is an oxysterol of continuing interest in biology and medicine. In the present study, we have prepared a side-chain fluorinated analog, 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one (VI), with the anticipation that the F7 substitution would block major metabolism of the 7-ketosterol, and thereby enhance its potential in vivo effects on serum cholesterol levels and other parameters. Chromium trioxide/dimethyl pyrazole oxidation of the acetate derivative of the previously described 25,26,26,26,27,27,27-heptafluorocholest-5-en-3 beta-ol (Swaminathan et al., 1993. J. Lipid Res. 34, 1805-1823) followed by mild alkaline hydrolysis gave VI. The effects of VI on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in Chinese hamster ovary (CHO-K1) cells, on acyl coenzyme A-cholesterol acyltransferase (ACAT) activity in rat jejunal microsomes, and on serum cholesterol levels and other parameters in male Sprague-Dawley rats were determined and compared with those obtained with I and with another alpha, beta-unsaturated ketosterol, i.e. 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (II). I and VI showed essentially the same potency, considerably less than that of II, in lowering the levels of HMG-CoA reductase activity in CHO-K1 cells. Whereas addition of II to rat jejunal microsomes inhibited ACAT activity (IC50 approximately 3 microM), I and VI had no effect under the conditions studied (from 1 to 16 microM). Dietary administration of I, at levels of 0.1 and 0.15%, had no effect on food consumption, gain in body weight, or serum cholesterol levels. At 0.2%, I caused a modest decrease in body weight gain and a slight decrease in serum cholesterol levels (relative to ad libitum but not pair-fed control animals). The F7-7-ketosterol VI, at 0.26% in diet (the molar equivalent of 0.2% I), had no effect on food consumption, body weight, or serum cholesterol levels. Administration of I (0.1, 0.15 or 0.2% in diet) caused increases in the weight of small intestine. In contrast, no effect of VI (0.26% in diet) on small intestinal weight was observed.


Chemistry and Physics of Lipids | 1994

Inhibitors of sterol synthesis: synthesis and spectral properties of derivatives of 3β-hydroxy-25,26,26,26,27,27,27-heptafluoro-5α-cholest-8(14)-en-15-one fluorinated at carbon 7 or carbon 9 and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured mammalian cells

Abdul U. Siddiqui; Shankar Swaminathan; Frederick D. Pinkerton; Nicolas Gerst; William K. Wilson; Hyunah Choi; George J. Schroepfer

As part of a program to prepare delta 8(14)-15-ketosterols that cannot readily be metabolized to cholesterol or side-chain oxygenated species, we have prepared 3 beta-hydroxy-7 alpha-fluoro-5 alpha-cholest-8(14)-en-15-one (VII) and the 9 alpha-hydroxy (IV), 9 alpha-fluoro (VI) and 7 alpha-fluoro (VIII) derivatives of 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluoro-5 alpha-cholest-8(14)-en-15-one (II). Sterol IV was prepared by oxidation of the delta 8,14 dienol ethyl ether of the 3 beta-acetate of II with m-chloroperbenzoic acid, followed by mild alkaline hydrolysis of the 3 beta-acetate derivative of IV. Treatment of IV with hydrogen fluoride-pyridine gave VI. The 7 alpha-fluoro-15-ketosterols VII and VIII were synthesized by treating the 3 beta,15-bis-trimethylsilyl delta 7,14-dienol ether derivative of the appropriate delta 8(14)-15-ketosterol with N-fluoropyridinium triflate, followed by hydrolysis of residual trimethylsilyl ethers and purification by high-performance liquid chromatography. The combined results of 1H and 13C nuclear magnetic resonance (NMR) chemical shifts, 1H-1H coupling constants, 1H-19F long-range coupling constants and molecular modeling indicated that a 7 alpha-fluoro, 9 alpha-fluoro or 9 alpha-hydroxy substituent has negligible effect on the conformation of the 15-ketosterols. 1H and 13C-NMR data are also given for delta 6,8(14)- and delta 8(14),9(11)-15-ketosterols, synthetic byproducts that could not be detected readily in samples of the fluoro-15-ketosterols by chromatographic methods. Mass spectra of VI and of previously reported 9 alpha-fluoro and 9 alpha-hydroxy-delta 8(14)-15-ketosterols showed abundant M-62 or M-60 ions that appear to correspond to loss of ketene and HF or H2O. The 9 alpha-hydroxy-F7-15-ketosterol IV, the 7 alpha-fluoro-15-ketosterol VII and the 7 alpha-fluoro-F7-15-ketosterol VIII were of equivalent potency to the parent 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I) in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. The 9 alpha-fluoro-F7-15-ketosterol VI showed high potency but appeared to be slightly less active than I.


Chemistry and Physics of Lipids | 1994

Inhibitors of sterol synthesis: effects of a 7α-alkyl analog of 3β-hydroxy-5α-cholest-8(14)-en-15-one on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured mammalian cells and on serum cholesterol levels and other parameters in rats

Abdul U. Siddiqui; Nicolas Gerst; Linda J. Kim; Frederick D. Pinkerton; Alemka Kisic; William K. Wilson; George J. Schroepfer

Abstract The 7α-methyl analog (II) of 3β-hydroxy-5α-cholest-8(14)-en-15-one (I) was prepared by chemical synthesis and evaluated with respect to its effects on HMG-CoA reductase activity in CHO-K1 cells and on serum cholesterol levels in rats. The 7α-methyl substitution had no detectable effect on the potency of I in lowering HMG-CoA reductase activity in the cultured cells. In contrast, the 7α-methyl substitution had a marked effect on the action of I in the suppression of food consumption in rats. Whereas II was less potent than I in lowering serum cholesterol levels in rats, it did so at dosage levels at which only slight or moderate effects on food consumption were observed. Full 1 H and 13 C-NMR assignments for II and intermediates in its synthesis have been presented. Conformational analysis, based on 1 H- 1 H coupling constants, NMR shieldings and force-field calculations, indicated that the 7α-methyl substitution had virtually no effect on the conformation of the 15-ketosterol apart from minor distortions of ring B.


Chemistry and Physics of Lipids | 1992

Inhibitors of sterol synthesis. Chemical syntheses and spectral properties of 26-oxygenated derivatives of 3β-hydroxy-5α-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells

Abdul U. Siddiqui; William K. Wilson; Karen E. Ruecker; Frederick D. Pinkerton; George J. Schroepfer

26-Oxygenated derivatives of delta 8(14)-15-ketosterols have been synthesized from (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one (IX) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Partial hydrolysis of IX gave a mixture, from which the 3 beta,26-diol II and the 26-acetate (XI) and 3 beta-acetate (X) monoesters were isolated. Mitsunobu reaction of XI followed by hydrolysis gave (25R)-3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (VI). Oxidation of XI with pyridinium chlorochromate followed by hydrolysis of the acetate gave (25R)-26-hydroxy-5 alpha-cholest-8(14)-ene-3,15-dione (VII). Oxidation of X with Jones reagent followed by hydrolysis of the acetate gave (25R)-3 beta-hydroxy-15-keto-5 alpha-cholest-8(14)-en-26-oic acid (IVa). Jones oxidation of II gave (25R)-3,15-diketo-5 alpha-cholest-8(14)-en-26-oic acid (VII). 1H and 13C nuclear magnetic resonance assignments and analyses of mass spectral fragmentation data are presented for each of the new compounds and their derivatives. The 3,15-diketone VII was found to be highly active in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells, with a potency comparable to that of I. In contrast, 3 alpha,26-diol VI was less potent than I or VII. The two carboxylic acid analogs IVa and VIII were considerably less potent than VI in lowering the levels of HMG-CoA reductase activity.

Collaboration


Dive into the Frederick D. Pinkerton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge