Frederick Vizeacoumar
University of Saskatchewan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederick Vizeacoumar.
Nature Biotechnology | 2011
Zhijian Li; Franco J. Vizeacoumar; Sondra Bahr; Jingjing Li; Jonas Warringer; Frederick Vizeacoumar; Renqiang Min; Benjamin VanderSluis; Jeremy Bellay; Michael Devit; James A. Fleming; Andrew D. Stephens; Julian Haase; Zhen Yuan Lin; Anastasia Baryshnikova; Hong Lu; Zhun Yan; Ke Jin; Sarah L. Barker; Alessandro Datti; Guri Giaever; Corey Nislow; Chris Bulawa; Chad L. Myers; Michael Costanzo; Anne-Claude Gingras; Zhaolei Zhang; Anders Blomberg; Kerry Bloom; Brenda Andrews
Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.
Science | 2012
Owen Ryan; Rebecca S. Shapiro; Christoph F. Kurat; David Mayhew; Anastasia Baryshnikova; Brian L. Chin; Zhen-Yuan Lin; Michael J. Cox; Frederick Vizeacoumar; Doris Cheung; Sondra Bahr; Kyle Tsui; Faiza Tebbji; Adnane Sellam; Fabian Istel; Tobias Schwarzmüller; Todd B. Reynolds; Karl Kuchler; David K. Gifford; Malcolm Whiteway; Guri Giaever; Corey Nislow; Michael Costanzo; Anne-Claude Gingras; Robi D. Mitra; Brenda Andrews; Gerald R. Fink; Leah E. Cowen; Charles Boone
Infectious Phenotype The pathogenic yeast Candida albicans needs to adopt a filamentous form to invade tissues. The distantly related yeast species Saccharomyces cerevisiae also takes on a filamentous form for nutrient foraging. Comparing genome-wide deletion libraries between the two species, Ryan et al. (p. 1353) identified genes involved in three different filamentous yeast phenotypes and found unique genes for each of these phenotypes. However, in addition, core genes, including a previously unknown conserved regulator, appear to have homologous roles in regulating filamentous growth in these distantly related yeast species. Yeast genes involved in the dimorphic switch between cell budding and filamentous growth types are identified. The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Σ1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.
Journal of Cell Biology | 2010
Franco J. Vizeacoumar; Nydia Van Dyk; Frederick Vizeacoumar; Vincent Cheung; Jingjing Li; Yaroslav Sydorskyy; Nicolle Case; Zhijian Li; Alessandro Datti; Corey Nislow; Brian Raught; Zhaolei Zhang; Brendan J. Frey; Kerry Bloom; Charles Boone; Brenda Andrews
A combination of yeast genetics, synthetic genetic array analysis, and high-throughput screening reveals that sumoylation of Mcm21p promotes disassembly of the mitotic spindle.
Molecular Systems Biology | 2014
Franco J. Vizeacoumar; Roland Arnold; Frederick Vizeacoumar; Megha Chandrashekhar; Alla Buzina; Jordan T.F. Young; Julian H. M. Kwan; Azin Sayad; Patricia Mero; Steffen Lawo; Hiromasa Tanaka; Kevin R. Brown; Anastasia Baryshnikova; Anthony B. Mak; Yaroslav Fedyshyn; Yadong Wang; Glauber C. Brito; Dahlia Kasimer; Taras Makhnevych; Troy Ketela; Alessandro Datti; Mohan Babu; Andrew Emili; Laurence Pelletier; Jeff Wrana; Zev A. Wainberg; Philip M. Kim; Robert Rottapel; Catherine O'Brien; Brenda Andrews
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large‐scale sequencing efforts. Using genome‐scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co‐culture competition assays to generate a high‐confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non‐isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN‐dependent genotypes across a series of non‐isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.
Genes & Development | 2015
Calley L. Hirsch; Zeynep Coban Akdemir; Li Wang; Gowtham Jayakumaran; Dan Trcka; Alexander Weiss; J. Javier Hernandez; Qun Pan; Hong Han; Xueping Xu; Zheng Xia; Andrew P. Salinger; Marenda A. Wilson; Frederick Vizeacoumar; Alessandro Datti; Wei Li; Austin J. Cooney; Michelle Craig Barton; Benjamin J. Blencowe; Jeffrey L. Wrana; Sharon Y.R. Dent
Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we performed a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we showed in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc-SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming.
PLOS ONE | 2013
Tyler Robinson; Jeff C. Liu; Frederick Vizeacoumar; Thomas Sun; Neil MacLean; Sean E. Egan; Aaron D. Schimmer; Alessandro Datti; Eldad Zacksenhaus
Triple negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which only chemotherapy and radiation therapy are currently available. The retinoblastoma (RB1) tumor suppressor is frequently lost in human TNBC. Knockdown of RB1 in luminal BC cells was shown to affect response to endocrine, radiation and several antineoplastic drugs. However, the effect of RB1 status on radiation and chemo-sensitivity in TNBC cells and whether RB1 status affects response to divergent or specific treatment are unknown. Using multiple basal-like and claudin-low cell lines, we hereby demonstrate that RB-negative TNBC cell lines are highly sensitive to gamma-irradiation, and moderately more sensitive to doxorubicin and methotrexate compared to RB-positive TNBC cell lines. In contrast, RB1 status did not affect sensitivity of TNBC cells to multiple other drugs including cisplatin (CDDP), 5-fluorouracil, idarubicin, epirubicin, PRIMA-1met, fludarabine and PD-0332991, some of which are used to treat TNBC patients. Moreover, a non-biased screen of ∼3400 compounds, including FDA-approved drugs, revealed similar sensitivity of RB-proficient and -deficient TNBC cells. Finally, ESA+/CD24−/low/CD44+ cancer stem cells from RB-negative TNBC lines were consistently more sensitive to gamma-irradiation than RB-positive lines, whereas the effect of chemotherapy on the cancer stem cell fraction varied irrespective of RB1 expression. Our results suggest that patients carrying RB-deficient TNBCs would benefit from gamma-irradiation as well as doxorubicin and methotrexate therapy, but not necessarily from many other anti-neoplastic drugs.
Cell Cycle | 2013
Tyler Robinson; Melody Y. Pai; Jeff C. Liu; Frederick Vizeacoumar; Thomas Sun; Sean E. Egan; Alessandro Datti; Jing Huang; Eldad Zacksenhaus
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.
Nucleic Acids Research | 2012
Ke Jin; Jingjing Li; Frederick Vizeacoumar; Zhijian Li; Renqiang Min; Lee Zamparo; Franco J. Vizeacoumar; Alessandro Datti; Brenda Andrews; Charles Boone; Zhaolei Zhang
About one-fifth of the genes in the budding yeast are essential for haploid viability and cannot be functionally assessed using standard genetic approaches such as gene deletion. To facilitate genetic analysis of essential genes, we and others have assembled collections of yeast strains expressing temperature-sensitive (ts) alleles of essential genes. To explore the phenotypes caused by essential gene mutation we used a panel of genetically engineered fluorescent markers to explore the morphology of cells in the ts strain collection using high-throughput microscopy. Here, we describe the design and implementation of an online database, PhenoM (Phenomics of yeast Mutants), for storing, retrieving, visualizing and data mining the quantitative single-cell measurements extracted from micrographs of the ts mutant cells. PhenoM allows users to rapidly search and retrieve raw images and their quantified morphological data for genes of interest. The database also provides several data-mining tools, including a PhenoBlast module for phenotypic comparison between mutant strains and a Gene Ontology module for functional enrichment analysis of gene sets showing similar morphological alterations. The current PhenoM version 1.0 contains 78 194 morphological images and 1 909 914 cells covering six subcellular compartments or structures for 775 ts alleles spanning 491 essential genes. PhenoM is freely available at http://phenom.ccbr.utoronto.ca/.
Breast Cancer Research | 2016
Alison K. Ward; Paul Mellor; Shari E. Smith; Stephanie Kendall; Natasha Just; Frederick Vizeacoumar; Sabuj Sarker; Zoe Phillips; Riaz Alvi; Anurag Saxena; Franco J. Vizeacoumar; Svein Carlsen; Deborah H. Anderson
BackgroundCREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the unfolded protein response, has recently been identified as a metastasis suppressor in both breast and bladder cancer.MethodsQuantitative real time PCR (qPCR) and immunoblotting were used to determine the impact of histone deacetylation and DNA methylation inhibitors on CREB3L1 expression in breast cancer cell lines. Breast cancer cell lines and tumor samples were analyzed similarly, and CREB3L1 gene methylation was determined using sodium bisulfite conversion and DNA sequencing. Immunohistochemistry was used to determine nuclear versus cytoplasmic CREB3L1 protein. Large breast cancer database analyses were carried out to examine relationships between CREB3L1 gene methylation and mRNA expression in addition to CREB3L1 mRNA expression and prognosis.ResultsThis study demonstrates that the low CREB3L1 expression previously seen in highly metastatic breast cancer cell lines is caused in part by epigenetic silencing. Treatment of several highly metastatic breast cancer cell lines that had low CREB3L1 expression with DNA methyltransferase and histone deacetylase inhibitors induced expression of CREB3L1, both mRNA and protein. In human breast tumors, CREB3L1 mRNA expression was upregulated in low and medium-grade tumors, most frequently of the luminal and HER2 amplified subtypes. In contrast, CREB3L1 expression was repressed in high-grade tumors, and its loss was most frequently associated with triple negative breast cancers (TNBCs). Importantly, bioinformatics analyses of tumor databases support these findings, with methylation of the CREB3L1 gene associated with TNBCs, and strongly negatively correlated with CREB3L1 mRNA expression. Decreased CREB3L1 mRNA expression was associated with increased tumor grade and reduced progression-free survival. An immunohistochemistry analysis revealed that low-grade breast tumors frequently had nuclear CREB3L1 protein, in contrast to the high-grade breast tumors in which CREB3L1 was cytoplasmic, suggesting that differential localization may also regulate CREB3L1 effectiveness in metastasis suppression.ConclusionsOur data further strengthens the role for CREB3L1 as a metastasis suppressor in breast cancer and demonstrates that epigenetic silencing is a major regulator of the loss of CREB3L1 expression. We also highlight that CREB3L1 expression is frequently altered in many cancer types suggesting that it could have a broader role in cancer progression and metastasis.
Oncotarget | 2016
Chelsea E Cunningham; Shuangshuang Li; Frederick Vizeacoumar; Kalpana Kalyanasundaram Bhanumathy; Joo Sang Lee; Sreejit Parameswaran; Levi A. Furber; Omar Abuhussein; James M. Paul; Megan McDonald; Shaina D. Templeton; Hersh Shukla; Amr M. El Zawily; Frederick Boyd; Nezeka Alli; Darrell D. Mousseau; Ron Geyer; Keith Bonham; Deborah H. Anderson; Jiong Yan; Li-Yuan Yu-Lee; Beth A. Weaver; Maruti Uppalapati; Eytan Ruppin; Anna Sablina; Andrew Freywald; Franco J. Vizeacoumar
Chromosomal Instability (CIN) is regarded as a unifying feature of heterogeneous tumor populations, driving intratumoral heterogeneity. Polo-Like Kinase 1 (PLK1), a serine-threonine kinase that is often overexpressed across multiple tumor types, is one of the key regulators of CIN and is considered as a potential therapeutic target. However, targeting PLK1 has remained a challenge due to the off-target effects caused by the inhibition of other members of the polo-like family. Here we use synthetic dosage lethality (SDL), where the overexpression of PLK1 is lethal only when another, normally non-lethal, mutation or deletion is present. Rather than directly inhibiting PLK1, we found that inhibition of PP2A causes selective lethality to PLK1-overexpressing breast, pancreatic, ovarian, glioblastoma, and prostate cancer cells. As PP2A is widely regarded as a tumor suppressor, we resorted to gene expression datasets from cancer patients to functionally dissect its therapeutic relevance. We identified two major classes of PP2A subunits that negatively correlated with each other. Interestingly, most mitotic regulators, including PLK1, exhibited SDL interactions with only one class of PP2A subunits (PPP2R1A, PPP2R2D, PPP2R3B, PPP2R5B and PPP2R5D). Validation studies and other functional cell-based assays showed that inhibition of PPP2R5D affects both levels of phospho-Rb as well as sister chromatid cohesion in PLK1-overexpressing cells. Finally, analysis of clinical data revealed that patients with high expression of mitotic regulators and low expression of Class I subunits of PP2A improved survival. Overall, these observations point to a context-dependent role of PP2A that warrants further exploration for therapeutic benefits.