Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik R. Wurm is active.

Publication


Featured researches published by Frederik R. Wurm.


Nature Nanotechnology | 2016

Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers

Susanne Schöttler; G. Becker; Svenja Winzen; Tobias Steinbach; Kristin Mohr; Katharina Landfester; Volker Mailänder; Frederik R. Wurm

The current gold standard to reduce non-specific cellular uptake of drug delivery vehicles is by covalent attachment of poly(ethylene glycol) (PEG). It is thought that PEG can reduce protein adsorption and thereby confer a stealth effect. Here, we show that polystyrene nanocarriers that have been modified with PEG or poly(ethyl ethylene phosphate) (PEEP) and exposed to plasma proteins exhibit a low cellular uptake, whereas those not exposed to plasma proteins show high non-specific uptake. Mass spectrometric analysis revealed that exposed nanocarriers formed a protein corona that contains an abundance of clusterin proteins (also known as apolipoprotein J). When the polymer-modified nanocarriers were incubated with clusterin, non-specific cellular uptake could be reduced. Our results show that in addition to reducing protein adsorption, PEG, and now PEEPs, can affect the composition of the protein corona that forms around nanocarriers, and the presence of distinct proteins is necessary to prevent non-specific cellular uptake.


Angewandte Chemie | 2015

Poly(phosphoester)s: A New Platform for Degradable Polymers.

Tobias Steinbach; Frederik R. Wurm

Poly(phosphoester)s (PPEs) play an important role in nature. They structure and determine life in the form of deoxy- and ribonucleic acid (DNA and RNA), and, as pyrophosphates, they store up chemical energy in organisms. Polymer chemistry, however, is dominated by the nondegradable polyolefins and degradable poly(carboxylic ester)s (PCEs) that are produced on a large scale today. Recent studies have illustrated the potential of PPEs for future applications beyond flame retardancy, and provided a coherent vision to implement this classic biopolymer in modern applications that demand biocompatibility and degradability as well as the possibility to adjust the properties to individual needs.


Journal of the American Chemical Society | 2014

Hyperbranched Unsaturated Polyphosphates as a Protective Matrix for Long-Term Photon Upconversion in Air

Filippo Marsico; Andrey Turshatov; Rengin Peköz; Yuri Avlasevich; Manfred Wagner; Katja Weber; Davide Donadio; Katharina Landfester; Stanislav Baluschev; Frederik R. Wurm

The energy stored in the triplet states of organic molecules, capable of energy transfer via an emissive process (phosphorescence) or a nonemissive process (triplet-triplet transfer), is actively dissipated in the presence of molecular oxygen. The reason is that photoexcited singlet oxygen is highly reactive, so the photoactive molecules in the system are quickly oxidized. Oxidation leads to further loss of efficiency and various undesirable side effects. In this work we have developed a structurally diverse library of hyperbranched unsaturated poly(phosphoester)s that allow efficient scavenging of singlet oxygen, but do not react with molecular oxygen in the ground state, i.e., triplet state. The triplet-triplet annihilation photon upconversion was chosen as a highly oxygen-sensitive process as proof for a long-term protection against singlet oxygen quenching, with comparable efficiencies of the photon upconversion under ambient conditions as in an oxygen-free environment in several unsaturated polyphosphates. The experimental results are further correlated to NMR spectroscopy and theoretical calculations evidencing the importance of the phosphate center. These results open a technological window toward efficient solar cells but also for sustainable solar upconversion devices, harvesting a broad-band sunlight excitation spectrum.


Biomacromolecules | 2010

Hyperbranched Polyglycerol-Based Lipids via Oxyanionic Polymerization: Toward Multifunctional Stealth Liposomes

Anna Maria Hofmann; Frederik R. Wurm; Eva Hühn; Thomas Nawroth; Peter Langguth; Holger Frey

We describe the synthesis of linear-hyperbranched lipids for liposome preparation based on linear poly(ethylene glycol) (PEG) and hyperbranched polyglycerol (PG). Molecular weights were adjusted to values around 3000 g/mol with varying degrees of polymerization of the linear and the branched segments in analogy to PEG-based stealth lipids; polydispersities were generally low and below 1.3. The hydrophobic anchors were introduced into the lipid structures as initiators for the anionic polymerization of ethylene oxide and are either based on cholesterol or on different aliphatic glyceryl ethers. Complete incorporation of the apolar initiators was evidenced by MALDI-ToF analysis at all stages of the reaction. The linear-hyperbranched polyether lipid is incorporated as the polyfunctional shell in liposome formulations together with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The resulting liposomes were subsequently characterized via dynamic light scattering (DLS) and small angle neutron scattering (SANS) as well as transmission electron microscopy (TEM), demonstrating the formation of unilamellar liposomes in the size range of 40 to 50 nm.


Polymer Chemistry | 2012

Functional PEG-based polymers with reactive groups via anionic ROP of tailor-made epoxides

Christine Mangold; Frederik R. Wurm; Holger Frey

In this review article functional epoxide monomers that are suitable for controlled ring-opening polymerization (ROP) are discussed. Functional epoxides possess reactive groups, which either are directly accessible or carry suitable protective groups that can be removed in a facile one-step reaction after polymerization. The methods used to obtain linear, functional aliphatic polyethers rely on living polymerization techniques for the synthesis of well-defined structures. Materials properties, such as thermo-responsive behavior in combination with different functional groups that can be addressed selectively, render these novel materials interesting for a variety of applications.


Polymer Chemistry | 2014

Hyperbranched poly(phosphoester)s as flame retardants for technical and high performance polymers

Karoline Täuber; Filippo Marsico; Frederik R. Wurm; Bernhard Schartel

A structurally novel hyperbranched halogen-free poly(phosphoester) (hbPPE) is proposed as a flame retardant in poly(ester)s and epoxy resins. hb polymeric flame retardants combine several advantages that make them an extraordinary approach for future flame retardants. hbPPE was synthesized by olefin metathesis polymerization according to a straightforward two-step protocol. The impact of hbPPE on pyrolysis, flammability (reaction-to-small-flame), and fire behavior under forced flaming conditions (cone calorimeter) was investigated for a model substance representing poly(ester)s, i.e. ethyl 4-hydroxybenzoate, and an epoxy resin of bisphenol A diglycidyl ether cured with isophorone diamine. The flame retardancy performance and mechanisms are discussed and compared to a commercial bisphenol A bis(diphenyl phosphate) (BDP). Both hbPPE and BDP combined gas-phase and condensed-phase activity; hbPPE is the more efficient flame retardant, and is proposed to be efficient in a greater variety of polymeric matrices. The hydrolysis of hbPPE is suggested to produce phosphorous acids, which, when available at the right temperatures, enhance the charring of the polymer in the condensed phase. The better fire protection behavior of the hbPPE is due not only to its higher phosphorus content, but also to the higher efficiency of the phosphorus it contains.


Polymer Chemistry | 2013

Unsaturated poly(phosphoester)s via ring-opening metathesis polymerization

Tobias Steinbach; Evandro M. Alexandrino; Frederik R. Wurm

For the first time, ring-opening metathesis polymerization of novel 7-membered cyclic phosphate monomers and their copolymerization with cyclooctene is presented. The monomers were investigated with respect to their metathesis behavior with different Grubbs catalysts and it was found that the Grubbs third generation catalyst gives the best results resulting in polymers with a molecular weight of up to 5000 g mol−1. Also copolymers with cyclooctene (up to a molecular weight of ca. 50 000 g mol−1) were synthesized and the monomer ratios were varied. The degree of polymerization could be controlled and the polydispersity index was usually below two. Acidic hydrolysis of the copolymer showed a complete shift of the molecular weight distribution to higher elution times in SEC, indicating a random incorporation into the poly(cyclooctene) backbone of the phosphate monomers and the possible degradation of the phosphate bonds along the backbone. Further, potentially degradable nanoparticles were prepared by a solvent evaporation miniemulsion technique.


Biomacromolecules | 2012

Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates.

Frederik R. Wurm; Carsten Dingels; Holger Frey; Harm-Anton Klok

Polymer-protein conjugates generated from side chain functional synthetic polymers are attractive because they can be easily further modified with, for example, labeling groups or targeting ligands. The residue specific modification of proteins with side chain functional synthetic polymers using the traditional coupling strategies may be compromised due to the nonorthogonality of the side-chain and chain-end functional groups of the synthetic polymer, which may lead to side reactions. This study explores the feasibility of the squaric acid diethyl ester mediated coupling as an amine selective, hydroxyl tolerant, and hydrolysis insensitive route for the preparation of side-chain functional, hydroxyl-containing, polymer-protein conjugates. The hydroxyl side chain functional polymers selected for this study are a library of amine end-functional, linear, midfunctional, hyperbranched, and linear-block-hyperbranched polyglycerol (PG) copolymers. These synthetic polymers have been used to prepare a diverse library of BSA and lysozyme polymer conjugates. In addition to exploring the scope and limitations of the squaric acid diethylester-mediated coupling strategy, the use of the library of polyglycerol copolymers also allows to systematically study the influence of molecular weight and architecture of the synthetic polymer on the biological activity of the protein. Comparison of the activity of PG-lysozyme conjugates generated from relatively low molecular weight PG copolymers did not reveal any obvious structure-activity relationships. Evaluation of the activity of conjugates composed of PG copolymers with molecular weights of 10000 or 20000 g/mol, however, indicated significantly higher activities of conjugates prepared from midfunctional synthetic polymers as compared to linear polymers of similar molecular weight.


Chemical Reviews | 2016

Reactions and Polymerizations at the Liquid-Liquid Interface

Keti Piradashvili; Evandro M. Alexandrino; Frederik R. Wurm; Katharina Landfester

Reactions and polymerizations at the interface of two immiscible liquids are reviewed. The confinement of two reactants at the interface to form a new product can be advantageous in terms of improved reaction kinetics, higher yields, and selectivity. The presence of the liquid-liquid interface can accelerate the reaction, or a phase-transfer catalyst is employed to draw the reaction in one phase of choice. Furthermore, the use of immiscible systems, e.g., in emulsions, offers an easy means of efficient product separation and heat dissipation. A general overview on low molecular weight organic chemistry is given, and the applications of heterophase polymerization, occurring at or in proximity of the interface, (mostly) in emulsions are presented. This strategy can be used for the efficient production of nano- and microcarriers for various applications.


Chemical Society Reviews | 2015

Carbohydrate nanocarriers in biomedical applications: functionalization and construction

Biao Kang; Till Opatz; Katharina Landfester; Frederik R. Wurm

The specific targeting of either tumor cells or immune cells in vivo by carefully designed and appropriately surface-functionalized nanocarriers may become an effective therapeutic treatment for a variety of diseases. Carbohydrates, which are prominent biomolecules, have shown their outstanding ability in balancing the biocompatibility, stability, biodegradability, and functionality of nanocarriers. The recent applications of sugar (mono/oligosaccharides and/or polysaccharides) for the development of nanomedicines are summarized in this review, including the application of carbohydrates for the surface-functionalization of various nanocarriers and for the construction of the nanocarrier itself. Current problems and challenges are also addressed.

Collaboration


Dive into the Frederik R. Wurm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge