Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédérique Béna is active.

Publication


Featured researches published by Frédérique Béna.


The New England Journal of Medicine | 2008

Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes

Mefford Hc; Andrew J. Sharp; Carl Baker; Andy Itsara; Zhaoshi Jiang; Karen Buysse; Shuwen Huang; Viv Maloney; John A. Crolla; Diana Baralle; Amanda L. Collins; Catherine L. Mercer; Koenraad K. Norga; Thomy de Ravel; Koenraad Devriendt; Ernie M.H.F. Bongers; Nicole de Leeuw; William Reardon; Stefania Gimelli; Frédérique Béna; Raoul C. M. Hennekam; Alison Male; Lorraine Gaunt; Jill Clayton-Smith; Ingrid Simonic; Soo Mi Park; Sarju G. Mehta; Serena Nik-Zainal; C. Geoffrey Woods; Helen V. Firth

BACKGROUND Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.


European Journal of Human Genetics | 2009

Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21

Robert Lyle; Frédérique Béna; Sarantis Gagos; Corinne Gehrig; Gipsy Lopez; Albert Schinzel; James Lespinasse; Armand Bottani; Sophie Dahoun; Laurence Taine; Martine Doco-Fenzy; Pascale Cornillet-Lefebvre; Anna Pelet; Stanislas Lyonnet; Annick Toutain; Laurence Colleaux; Jürgen Horst; Ingo Kennerknecht; Nobuaki Wakamatsu; Maria Descartes; Judy Franklin; Lina Florentin-Arar; Sophia Kitsiou; Emilie Aı̈t Yahya-Graison; Maher Costantine; Pierre-Marie Sinet; Jean Maurice Delabar

Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.


PLOS Genetics | 2011

Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome

Maria Clara Bonaglia; Roberto Giorda; Silvana Beri; Cristina De Agostini; Francesca Novara; Marco Fichera; Lucia Grillo; Ornella Galesi; Annalisa Vetro; Roberto Ciccone; Maria Teresa Bonati; Sabrina Giglio; Renzo Guerrini; Sara Osimani; Susan Marelli; Claudio Zucca; Rita Grasso; Renato Borgatti; Elisa Mani; Cristina Motta; Massimo Molteni; Corrado Romano; Donatella Greco; Santina Reitano; Anna Baroncini; Elisabetta Lapi; Antonella Cecconi; Giulia Arrigo; Maria Grazia Patricelli; Chiara Pantaleoni

In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.


Orphanet Journal of Rare Diseases | 2009

Recurrent microdeletion at 17q12 as a cause of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: two case reports

Laura Bernardini; Stefania Gimelli; Cristina Gervasini; Massimo Carella; Anwar Baban; Giada Frontino; Giancarlo Barbano; Maria Teresa Divizia; Luigi Fedele; Antonio Novelli; Frédérique Béna; Faustina Lalatta; Monica Miozzo; Bruno Dallapiccola

BackgroundMayer-Rokitansky-Kuster-Hauser syndrome (MRKH) consists of congenital aplasia of the uterus and the upper part of vagina due to anomalous development of Müllerian ducts, either isolated or associated with other congenital malformations, including renal, skeletal, hearing and heart defects. This disorder has an incidence of approximately 1 in 4500 newborn girls and the aetiology is poorly understood.Methods and Resultswe report on two patients affected by MRKH syndrome in which array-CGH analysis disclosed an identical deletion spanning 1.5 Mb of genomic DNA at chromosome 17q12. One patient was affected by complete absence of uterus and vagina, with bilaterally normal ovaries, while the other displayed agenesis of the upper part of vagina, right unicornuate uterus, non cavitating rudimentary left horn and bilaterally multicystic kidneys. The deletion encompassed two candidate genes, TCF2 and LHX1. Mutational screening of these genes in a selected group of 20 MRKH females without 17q12 deletion was negative.ConclusionDeletion 17q12 is a rare albeit recurrent anomaly mediated by segmental duplications, previously reported in subjects with developmental kidney abnormalities and diabetes. The present two patients expand the clinical spectrum associated with this imbalance and suggest that this region is a candidate locus for a subset of MRKH syndrome individuals, with or without renal defects.


Embo Molecular Medicine | 2013

Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21

Youssef Hibaoui; Iwona Grad; A. Letourneau; M. Reza Sailani; Sophie Dahoun; Federico Santoni; Stefania Gimelli; Michel Guipponi; Marie Françoise Pelte; Frédérique Béna; Anis Feki

Down syndrome (trisomy 21) is the most common viable chromosomal disorder with intellectual impairment and several other developmental abnormalities. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from monozygotic twins discordant for trisomy 21 in order to eliminate the effects of the variability of genomic background. The alterations observed by genetic analysis at the iPSC level and at first approximation in early development illustrate the developmental disease transcriptional signature of Down syndrome. Moreover, we observed an abnormal neural differentiation of Down syndrome iPSCs in vivo when formed teratoma in NOD‐SCID mice, and in vitro when differentiated into neuroprogenitors and neurons. These defects were associated with changes in the architecture and density of neurons, astroglial and oligodendroglial cells together with misexpression of genes involved in neurogenesis, lineage specification and differentiation. Furthermore, we provide novel evidence that dual‐specificity tyrosine‐(Y)‐phosphorylation regulated kinase 1A (DYRK1A) on chromosome 21 likely contributes to these defects. Importantly, we found that targeting DYRK1A pharmacologically or by shRNA results in a considerable correction of these defects.


American Journal of Medical Genetics | 2013

Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature

Frédérique Béna; Damien L. Bruno; Mats Eriksson; Conny M. A. van Ravenswaaij-Arts; Zornitza Stark; Trijnie Dijkhuizen; Erica H. Gerkes; Stefania Gimelli; Devika Ganesamoorthy; Ann-Charlotte Thuresson; Audrey Labalme; Marianne Till; Frédéric Bilan; Laurent Pasquier; Alain Kitzis; Christele Dubourgm; Massimiliano Rossi; Armand Bottani; Maryline Gagnebin; Damien Sanlaville; Brigitte Gilbert-Dussardier; Michel Guipponi; Arie van Haeringen; Marjolein Kriek; Claudia Ruivenkamp; Britt Marie Anderlid; Howard R. Slater; Jacqueline Schoumans

This study aimed to elucidate the observed variable phenotypic expressivity associated with NRXN1 (Neurexin 1) haploinsufficiency by analyses of the largest cohort of patients with NRXN1 exonic deletions described to date and by comprehensively reviewing all comparable copy number variants in all disease cohorts that have been published in the peer reviewed literature (30 separate papers in all). Assessment of the clinical details in 25 previously undescribed individuals with NRXN1 exonic deletions demonstrated recurrent phenotypic features consisting of moderate to severe intellectual disability (91%), severe language delay (81%), autism spectrum disorder (65%), seizures (43%), and hypotonia (38%). These showed considerable overlap with previously reported NRXN1‐deletion associated phenotypes in terms of both spectrum and frequency. However, we did not find evidence for an association between deletions involving the β‐isoform of neurexin‐1 and increased head size, as was recently published in four cases with a deletion involving the C‐terminus of NRXN1. We identified additional rare copy number variants in 20% of cases. This study supports a pathogenic role for heterozygous exonic deletions of NRXN1 in neurodevelopmental disorders. The additional rare copy number variants identified may act as possible phenotypic modifiers as suggested in a recent digenic model of neurodevelopmental disorders.


PLOS ONE | 2010

A Teratocarcinoma-Like Human Embryonic Stem Cell (hESC) Line and Four hESC Lines Reveal Potentially Oncogenic Genomic Changes

Outi Hovatta; Marisa Jaconi; Virpi Töhönen; Frédérique Béna; Stefania Gimelli; Alexis Bosman; Frida Holm; Stefan Wyder; Evgeny M. Zdobnov; Olivier Irion; Peter W. Andrews; Marco Zucchelli; Juha Kere; Anis Feki

The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis.


Journal of Applied Toxicology | 2012

Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells

André-Pascal Sappino; Raphaële Buser; Laurence Lesne; Stefania Gimelli; Frédérique Béna; Dominique Belin; Stefano J. Mandriota

Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF‐10A human mammary epithelial cells, a well‐established normal human mammary epithelial cell model, long‐term exposure to aluminium chloride (AlCl3) concentrations of 10–300 µ m, i.e. up to 100 000‐fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage‐independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl3 also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF‐10A cells morphologically transformed by long‐term exposure to AlCl3 display strong upregulation of the p53/p21Waf1 pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long‐term exposure to AlCl3 generates and selects for cells able to bypass p53/p21Waf1‐mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright


Journal of Medical Genetics | 2010

Duplications of the critical Rubinstein–Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome

Bernard Thienpont; Frédérique Béna; Jeroen Breckpot; Nicole Philip; Björn Menten; Hilde Van Esch; Emmanuel Scalais; Jessica Salamone; Chin-To Fong; Jennifer Kussmann; Dorothy K. Grange; Jerome L. Gorski; Farah R. Zahir; Siu Li Yong; Michael M Morris; Stefania Gimelli; Jean-Pierre Fryns; Geert Mortier; Jan M. Friedman; Laurent Villard; Armand Bottani; Joris Vermeesch; Sau Wai Cheung; Koen Devriendt

Background The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. Objectives To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. Results The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein–Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. Conclusions Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant.


Human Mutation | 2014

Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families.

Periklis Makrythanasis; Mari Nelis; Federico Santoni; Michel Guipponi; Anne Vannier; Frédérique Béna; Stefania Gimelli; Elisavet Stathaki; Samia A. Temtamy; André Mégarbané; Amira Masri; Mona Aglan; Maha S. Zaki; Armand Bottani; Siv Fokstuen; Lorraine Gwanmesia; Konstantinos Aliferis; Mariana Bustamante Eduardo; Georgios Stamoulis; Stavroula Psoni; Sofia Kitsiou-Tzeli; Helen Fryssira; Emmanouil Kanavakis; Nasir A.S. Al-Allawi; Sana' Al Hait; Siham Chafai Elalaoui; Nadine Jalkh; Lihadh Al-Gazali; Fatma Al-Jasmi; Habiba Chaabouni Bouhamed

Rare, atypical, and undiagnosed autosomal‐recessive disorders frequently occur in the offspring of consanguineous couples. Current routine diagnostic genetic tests fail to establish a diagnosis in many cases. We employed exome sequencing to identify the underlying molecular defects in patients with unresolved but putatively autosomal‐recessive disorders in consanguineous families and postulated that the pathogenic variants would reside within homozygous regions. Fifty consanguineous families participated in the study, with a wide spectrum of clinical phenotypes suggestive of autosomal‐recessive inheritance, but with no definitive molecular diagnosis. DNA samples from the patient(s), unaffected sibling(s), and the parents were genotyped with a 720K SNP array. Exome sequencing and array CGH (comparative genomic hybridization) were then performed on one affected individual per family. High‐confidence pathogenic variants were found in homozygosity in known disease‐causing genes in 18 families (36%) (one by array CGH and 17 by exome sequencing), accounting for the clinical phenotype in whole or in part. In the remainder of the families, no causative variant in a known pathogenic gene was identified. Our study shows that exome sequencing, in addition to being a powerful diagnostic tool, promises to rapidly expand our knowledge of rare genetic Mendelian disorders and can be used to establish more detailed causative links between mutant genotypes and clinical phenotypes.

Collaboration


Dive into the Frédérique Béna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Sharp

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge