Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Vannier is active.

Publication


Featured researches published by Anne Vannier.


Nature | 2014

Domains of genome-wide gene expression dysregulation in Down’s syndrome

A. Letourneau; Federico Santoni; Ximena Bonilla; M. Reza Sailani; David Gonzalez; Jop Kind; Claire Chevalier; Robert E. Thurman; Richard Sandstrom; Youssef Hibaoui; Marco Garieri; Konstantin Popadin; Emilie Falconnet; Maryline Gagnebin; Corinne Gehrig; Anne Vannier; Michel Guipponi; Laurent Farinelli; Daniel Robyr; Eugenia Migliavacca; Christelle Borel; Samuel Deutsch; Anis Feki; John A. Stamatoyannopoulos; Yann Herault; Bas van Steensel; Roderic Guigó

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins’ fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down’s syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.


Retrovirology | 2013

TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm

Alberto De Iaco; Federico Santoni; Anne Vannier; Michel Guipponi; Jeremy Luban

BackgroundDespite intensive investigation the mechanism by which HIV-1 reaches the host cell nucleus is unknown. TNPO3, a karyopherin mediating nuclear entry of SR-proteins, was shown to be required for HIV-1 infectivity. Some investigators have reported that TNPO3 promotes HIV-1 nuclear import, as would be expected for a karyopherin. Yet, an equal number of investigators have failed to obtain evidence that supports this model. Here, a series of experiments were performed to better elucidate the mechanism by which TNPO3 promotes HIV-1 infectivity.ResultsTo examine the role of TNPO3 in HIV-1 replication, the 2-LTR circles that are commonly used as a marker for HIV-1 nuclear entry were cloned after infection of TNPO3 knockdown cells. Potential explanation for the discrepancy in the literature concerning the effect of TNPO3 was provided by sequencing hundreds of these clones: a significant fraction resulted from autointegration into sites near the LTRs and therefore were not bona fide 2-LTR circles. In response to this finding, new techniques were developed to monitor HIV-1 cDNA, including qPCR reactions that distinguish 2-LTR circles from autointegrants, as well as massive parallel sequencing of HIV-1 cDNA. With these assays, TNPO3 knockdown was found to reduce the levels of 2-LTR circles. This finding was puzzling, though, since previous work has shown that the HIV-1 determinant for TNPO3-dependence is capsid (CA), an HIV-1 protein that forms a mega-dalton protein lattice in the cytoplasm. TNPO3 imports cellular splicing factors via their SR-domain. Attention was therefore directed towards CPSF6, an SR-protein that binds HIV-1 CA and inhibits HIV-1 nuclear import when the C-terminal SR-domain is deleted. The effect of 27 HIV-1 capsid mutants on sensitivity to TNPO3 knockdown was then found to correlate strongly with sensitivity to inhibition by a C-terminal deletion mutant of CPSF6 (R2 = 0.883, p < 0.0001). TNPO3 knockdown was then shown to cause CPSF6 to accumulate in the cytoplasm. Mislocalization of CPSF6 to the cytoplasm, whether by TNPO3 knockdown, deletion of the CPSF6 nuclear localization signal, or by fusion of CPSF6 to a nuclear export signal, resulted in inhibition of HIV-1 replication. Additionally, targeting CPSF6 to the nucleus by fusion to a heterologous nuclear localization signal rescued HIV-1 from the inhibitory effects of TNPO3 knockdown. Finally, mislocalization of CPSF6 to the cytoplasm was associated with abnormal stabilization of the HIV-1 CA core.ConclusionTNPO3 promotes HIV-1 infectivity indirectly, by shifting the CA-binding protein CPSF6 to the nucleus, thus preventing the excessive HIV-1 CA stability that would otherwise result from cytoplasmic accumulation of CPSF6.


Human Mutation | 2014

Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families.

Periklis Makrythanasis; Mari Nelis; Federico Santoni; Michel Guipponi; Anne Vannier; Frédérique Béna; Stefania Gimelli; Elisavet Stathaki; Samia A. Temtamy; André Mégarbané; Amira Masri; Mona Aglan; Maha S. Zaki; Armand Bottani; Siv Fokstuen; Lorraine Gwanmesia; Konstantinos Aliferis; Mariana Bustamante Eduardo; Georgios Stamoulis; Stavroula Psoni; Sofia Kitsiou-Tzeli; Helen Fryssira; Emmanouil Kanavakis; Nasir A.S. Al-Allawi; Sana' Al Hait; Siham Chafai Elalaoui; Nadine Jalkh; Lihadh Al-Gazali; Fatma Al-Jasmi; Habiba Chaabouni Bouhamed

Rare, atypical, and undiagnosed autosomal‐recessive disorders frequently occur in the offspring of consanguineous couples. Current routine diagnostic genetic tests fail to establish a diagnosis in many cases. We employed exome sequencing to identify the underlying molecular defects in patients with unresolved but putatively autosomal‐recessive disorders in consanguineous families and postulated that the pathogenic variants would reside within homozygous regions. Fifty consanguineous families participated in the study, with a wide spectrum of clinical phenotypes suggestive of autosomal‐recessive inheritance, but with no definitive molecular diagnosis. DNA samples from the patient(s), unaffected sibling(s), and the parents were genotyped with a 720K SNP array. Exome sequencing and array CGH (comparative genomic hybridization) were then performed on one affected individual per family. High‐confidence pathogenic variants were found in homozygosity in known disease‐causing genes in 18 families (36%) (one by array CGH and 17 by exome sequencing), accounting for the clinical phenotype in whole or in part. In the remainder of the families, no causative variant in a known pathogenic gene was identified. Our study shows that exome sequencing, in addition to being a powerful diagnostic tool, promises to rapidly expand our knowledge of rare genetic Mendelian disorders and can be used to establish more detailed causative links between mutant genotypes and clinical phenotypes.


PLOS Genetics | 2014

Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling

Patrick Callier; Pierre Calvel; Armine Matevossian; Periklis Makrythanasis; Pascal Bernard; Hiroshi Kurosaka; Anne Vannier; Christel Thauvin-Robinet; Christelle Borel; Séverine Mazaud-Guittot; Antoine Rolland; Christèle Desdoits-Lethimonier; Michel Guipponi; Céline Zimmermann; Isabelle Stévant; Françoise Kühne; Federico Santoni; Sandy Lambert; Frédéric Huet; Francine Mugneret; Jadwiga Jaruzelska; Laurence Faivre; Dagmar Wilhelm; Bernard Jégou; Paul A. Trainor; Marilyn D. Resh; Serge Nef

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.


PLOS ONE | 2015

DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins

M. Reza Sailani; Federico Santoni; A. Letourneau; Christelle Borel; Periklis Makrythanasis; Youssef Hibaoui; Konstantin Popadin; Ximena Bonilla; Michel Guipponi; Corinne Gehrig; Anne Vannier; Frederique Carre-Pigeon; Anis Feki; Dean Nizetic

DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes.


Nature Communications | 2014

Extrachromosomal driver mutations in glioblastoma and low-grade glioma

Sergey Igorievich Nikolaev; Federico Santoni; Marco Garieri; Periklis Makrythanasis; Emilie Falconnet; Michel Guipponi; Anne Vannier; Ivan Radovanovic; Frédérique Béna; Françoise Forestier; Karl Lothard Schaller; Valérie Dutoit; Virginie Clément-Schatlo; Pierre-Yves Dietrich

Alteration of the number of copies of Double Minutes (DMs) with oncogenic EGFR mutations in response to tyrosine kinase inhibitors (TKIs) is a novel adaptive mechanism of glioblastoma. Here we provide evidence that such mutations in DMs, called here Amplification-Linked Extrachromosomal Mutations (ALEMs), originate extrachromosomally and could therefore be completely eliminated from the cancer cells. By exome sequencing of 7 glioblastoma patients we reveal ALEMs in EGFR, PDGFRA and other genes. These mutations together with DMs are lost by cancer cells in culture. We confirm the extrachromosomal origin of such mutations by showing that wild type and mutated DMs may coexist in the same tumor. Analysis of 4198 tumors suggests the presence of ALEMs across different tumor types with the highest prevalence in glioblastomas and low grade gliomas. The extrachromosomal nature of ALEMs explains the observed drastic changes in the amounts of mutated oncogenes (like EGFR or PDGFRA) in glioblastoma in response to environmental changes.


Human Mutation | 2012

A diagnostic genetic test for the physical mapping of germline rearrangements in the susceptibility breast cancer genes BRCA1 and BRCA2

Kevin Cheeseman; Etienne Rouleau; Anne Vannier; Aurélie Thomas; Adrien Briaux; Cédrick Lefol; Pierre Walrafen; Aaron Bensimon; Rosette Lidereau; Emmanuel Conseiller; Maurizio Ceppi

The BRCA1 and BRCA2 genes are involved in breast and ovarian cancer susceptibility. About 2 to 4% of breast cancer patients with positive family history, negative for point mutations, can be expected to carry large rearrangements in one of these two genes. We developed a novel diagnostic genetic test for the physical mapping of large rearrangements, based on molecular combing (MC), a FISH‐based technique for direct visualization of single DNA molecules at high resolution. We designed specific Genomic Morse Codes (GMCs), covering the exons, the noncoding regions, and large genomic portions flanking both genes. We validated our approach by testing 10 index cases with positive family history of breast cancer and 50 negative controls. Large rearrangements, corresponding to deletions and duplications with sizes ranging from 3 to 40 kb, were detected and characterized on both genes, including four novel mutations. The nature of all the identified mutations was confirmed by high‐resolution array comparative genomic hybridization (aCGH) and breakpoints characterized by sequencing. The developed GMCs allowed to localize several tandem repeat duplications on both genes. We propose the developed genetic test as a valuable tool to screen large rearrangements in BRCA1 and BRCA2 to be combined in clinical settings with an assay capable of detecting small mutations. Hum Mutat 33:998–1009, 2012.


Human Genomics | 2016

Experience of a multidisciplinary task force with exome sequencing for Mendelian disorders

Siv Fokstuen; Periklis Makrythanasis; E. Hammar; Michel Guipponi; E. Ranza; K. Varvagiannis; Federico Santoni; M. Albarca-Aguilera; M. E. Poleggi; F. Couchepin; C. Brockmann; Alex Mauron; Samia Hurst; Celine Moret; Corinne Gehrig; Anne Vannier; Jeremy Bevillard; T. Araud; Stefania Gimelli; Elisavet Stathaki; Ariane Paoloni-Giacobino; Armand Bottani; Frédérique Sloan-Béna; L. D’Amato Sizonenko; M. Mostafavi; Hanan Hamamy; T. Nouspikel; Jean-Louis Blouin

BackgroundIn order to optimally integrate the use of high-throughput sequencing (HTS) as a tool in clinical diagnostics of likely monogenic disorders, we have created a multidisciplinary “Genome Clinic Task Force” at the University Hospitals of Geneva, which is composed of clinical and molecular geneticists, bioinformaticians, technicians, bioethicists, and a coordinator.Methods and resultsWe have implemented whole exome sequencing (WES) with subsequent targeted bioinformatics analysis of gene lists for specific disorders. Clinical cases of heterogeneous Mendelian disorders that could potentially benefit from HTS are presented and discussed during the sessions of the task force. Debate concerning the interpretation of identified variants and the content of the final report constitutes a major part of the task force’s work. Furthermore, issues related to bioethics, genetic counseling, quality control, and reimbursement are also addressed.ConclusionsThis multidisciplinary task force has enabled us to create a platform for regular exchanges between all involved experts in order to deal with the multiple complex issues related to HTS in clinical practice and to continuously improve the diagnostic use of HTS. In addition, this task force was instrumental to formally approve the reimbursement of HTS for molecular diagnosis of Mendelian disorders in Switzerland.


Sexual Development | 2015

A Case of Wiedemann-Steiner Syndrome Associated with a 46,XY Disorder of Sexual Development and Gonadal Dysgenesis

Pierre Calvel; Kamila Kusz-Zamelczyk; Periklis Makrythanasis; Damian Mikolaj Janecki; Christelle Borel; Anne Vannier; Frédérique Béna; Stefania Gimelli; Piotr Fichna; Serge Nef; Jadwiga Jaruzelska

We report the case of a female patient suffering from a 46,XY disorder of sexual development (DSD) with complete gonadal dysgenesis and Wiedemann-Steiner Syndrome (WDSTS). The coexistence of these 2 conditions has not yet been reported. Using whole exome sequencing and comparative genome hybridization array, we identified a de novo MLL/KMT2A gene nonsense mutation which explains the WDSTS phenotype. In addition, we discovered novel genetic variants, which could explain the testicular dysgenesis observed in the patient, a maternally inherited 167-kb duplication of DAAM2 and MOCS1 genes and a de novo LRRC33/NRROS gene mutation. These genes, some of which are expressed during mouse gonadal development, could be considered as potentially new candidate genes for DSD.


PLOS ONE | 2015

HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells.

A. Letourneau; Gilda Cobellis; Alexandre Fort; Federico Santoni; Marco Garieri; Emilie Falconnet; Pascale Ribaux; Anne Vannier; Michel Guipponi; Piero Carninci; Christelle Borel

The HSA21 encoded Single-minded 2 (SIM2) transcription factor has key neurological functions and is a good candidate to be involved in the cognitive impairment of Down syndrome. We aimed to explore the functional capacity of SIM2 by mapping its DNA binding sites in mouse embryonic stem cells. ChIP-sequencing revealed 1229 high-confidence SIM2-binding sites. Analysis of the SIM2 target genes confirmed the importance of SIM2 in developmental and neuronal processes and indicated that SIM2 may be a master transcription regulator. Indeed, SIM2 DNA binding sites share sequence specificity and overlapping domains of occupancy with master transcription factors such as SOX2, OCT4 (Pou5f1), NANOG or KLF4. The association between SIM2 and these pioneer factors is supported by co-immunoprecipitation of SIM2 with SOX2, OCT4, NANOG or KLF4. Furthermore, the binding of SIM2 marks a particular sub-category of enhancers known as super-enhancers. These regions are characterized by typical DNA modifications and Mediator co-occupancy (MED1 and MED12). Altogether, we provide evidence that SIM2 binds a specific set of enhancer elements thus explaining how SIM2 can regulate its gene network in neuronal features.

Collaboration


Dive into the Anne Vannier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge