Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frutos C. Marhuenda-Egea is active.

Publication


Featured researches published by Frutos C. Marhuenda-Egea.


Chemosphere | 2008

Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability.

M.A. Bustamante; C. Paredes; Frutos C. Marhuenda-Egea; A. Pérez-Espinosa; M.P. Bernal; R. Moral

The aim of this work was to study the viability of recycling the solid wastes generated by the winery and distillery industry by means of co-composting with animal manures, as well as to evaluate the quality of the composts obtained. Two piles, using exhausted grape marc and cattle manure or poultry manure, respectively (at ratios, on a fresh weight basis, of 70:30), were composted by the Rutgers static pile composting system. Throughout the composting process, a number of parameters were monitored, such as pH, electrical conductivity, organic matter, water-soluble carbon, water-soluble polyphenols, different forms of nitrogen (organic nitrogen, ammonium and nitrate) and humification indices (humification ratio, humification index, percentage of humic acid-like C, polymerisation ratio and cation exchange capacity), as well as the germination index. Organic matter losses followed first-order kinetics equation in both piles, the highest organic matter mineralisation rate being observed with exhausted grape marc and cow manure. On the other hand, the mixture with the lowest C/N ratio, using exhausted grape marc and poultry manure, showed the highest initial ammonium contents, probably due to the higher and more labile N content of poultry manure. The increase in the cation exchange capacity revealed the organic matter humification during composting. In contrast, other humification parameters, such as the humification ratio and the humification index, did not show the expected evolution and, thus, could not be used to assess compost maturity. Composting produced a degradation of the phytotoxic compounds, such as polyphenols, to give composts without a phytotoxic character. Therefore, composting can be considered as an efficient treatment to recycle this type of wastes, due to composts presented a stable and humified organic matter and without phytotoxic effects, which makes them suitable for their agronomic use.


Current Opinion in Biotechnology | 2002

Extreme halophilic enzymes in organic solvents

Frutos C. Marhuenda-Egea; María José Bonete

The use of halophilic extremozymes in organic media has been limited by the lack of enzymological studies in these media. To explore the behaviour of these extremozymes in organic media, different approaches have been adopted, including the dispersal of the lyophilised enzyme or the use of reverse micelles. The use of reverse micelles in maintaining high activities of halophilic extremozymes under unfavourable conditions could open new fields of application such as the use of these enzymes as biocatalysts in organic media.


Bioresource Technology | 2009

Utilisation of manure composts by high-value crops: safety and environmental challenges.

R. Moral; C. Paredes; M.A. Bustamante; Frutos C. Marhuenda-Egea; M.P. Bernal

The intensification in livestock production has increased the need of efficient treatments of waste streams especially to preserve as much as possible, the nutrients into the soil-plant system. Composting is a cheap, efficient and sustainable treatment for solid wastes that is always included in any manure treatment scenario. In this paper, an overview about the environmental and safety challenges of composting of manures is made considering the compost quality requirements established by the main demanding sectors. Co-composting and additive strategies are presented as feasible options for the improvement of compost quality. For quality evaluation of manure compost, the use of both classical and innovative instrumental techniques could increase our knowledge about added properties in compost, especially those related to organic matter stability.


Fertility and Sterility | 2010

A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation.

Frutos C. Marhuenda-Egea; Encarnación Martínez-Sabater; Rubén Gonsálvez-Álvarez; Belén Lledó; Jorge Ten; Rafael Bernabeu

We present a new methodology to predict embryo viability in assisted reproductive technology (ART) treatments by determining the relative amino acid concentrations in human embryo culture medium on day 3, using high-performance liquid chromatography with mass spectroscopy analysis without derivatization. The model was performed with soft independent modeling of class analogy for the samples from nonpregnancy and pregnancy cases.


Journal of Agricultural and Food Chemistry | 2009

Study of the evolution of organic matter during composting of winery and distillery residues by classical and chemometric analysis.

Encarnación Martínez-Sabater; M.A. Bustamante; Frutos C. Marhuenda-Egea; Mounir El-Khattabi; R. Moral; Emilio Lorenzo; C. Paredes; Luís N. Gálvez; Juana D. Jordá

The aim of the present paper is to evaluate the changes of organic matter during the composting process of fresh winery and distillery residues (WDR) by means of classical and chemometric analysis of (13)C cross-polarization magic angle spinning (CPMAS) NMR and Fourier transform infrared (FT-IR) spectra. (13)C NMR spectroscopy displayed a preferential biodegradation of carbohydrates as well as an accumulation of aliphatic chains (cutin- and suberin-like substances). This preferential biodegradation of the organic fractions reduces the landfill emission potential. Although the composition of the input mixture strongly affects the shape of the infrared (IR) spectra, typical bands of components can be selected and used to follow the composting process; that is, changes in the relative absorbances of the band of nitrate (at 1384 cm(-1)) and in the band of carbohydrates (at 1037 cm(-1)) have been observed. In addition, different chemometric tools, such as partial least-squares (PLS), interval PLS (iPLS), backward iPLS (biPLS), and genetic algorithm (GA), have been used to find the most relevant spectral region during the composting process. Chemometric analysis based on the combined and sequential use of iPLS and GA has been revealed as a very powerful tool for the detection in samples of the most relevant spectral region related to the composting process. From the obtained results, it can be concluded that CPMAS (13)C NMR supported by FT-IR could provide information about the evolution and characteristics of the organic matter during the composting process in order to avoid contamination problems after its use as amendment in agriculture or after landfilling.


Journal of Biotechnology | 2002

An extreme halophilic enzyme active at low salt in reversed micelles

Frutos C. Marhuenda-Egea; Sonsoles Piera-Velazquez; Chiquinquirá Cadenas; Eduardo Cadenas

Possible biotechnological applications of extreme halophilic enzymes are strongly determined by their high salt requirement of around 4 M NaCl. Consequently, the use of these in organic media seemed to be unlikely. However, we have succeeded in dissolving a halophilic enzyme, p-nitrophenylphosphate phosphatase from the archaeon Halobacterium salinarum, in an organic medium by creating a reverse micellar system with very low salt concentration. The enzyme retained its catalytic properties in reversed micelles made with an anionic surfactant (dioctyl sodium sulphosuccinate) or with a cationic surfactant (hexadecyltrimethylammonium bromide) in cyclohexane plus 1-butanol as co-surfactant. The dependence of the rate of hydrolysis of p-nitrophenylphosphate phosphate on the molar water/surfactant ratio (w(0) value) showed a bell-shaped curve for each surfactant system. Kinetic parameters were determined in each system. The enzymatic reaction appeared to follow Michaelis-Menten kinetics with the anionic surfactant only. The kinetic behaviour was determined at different concentrations of Mn(2+) in reversed micelles of dioctyl sodium sulphosuccinate as surfactant.


Extremophiles | 2007

The effect of ammonium on assimilatory nitrate reduction in the haloarchaeon Haloferax mediterranei

Rosa María Martínez-Espinosa; Belén Lledó; Frutos C. Marhuenda-Egea; María José Bonete

Physiology, regulation and biochemical aspects of the nitrogen assimilation are well known in Prokarya or Eukarya but they are poorly described in Archaea domain. The haloarchaeon Haloferax mediterranei can use different nitrogen inorganic sources (NO3−, NO2− or NH4+) for growth. Different approaches were considered to study the effect of NH4+ on nitrogen assimilation in Hfx. mediterranei cells grown in KNO3 medium. The NH4+ addition to KNO3 medium caused a decrease of assimilatory nitrate (Nas) and nitrite reductases (NiR) activities. Similar effects were observed when nitrate-growing cells were transferred to NH4+ media. Both activities increased when NH4+ was removed from culture, showing that the negative effect of NH4+ on this pathway is reversible. These results suggest that ammonium causes the inhibition of the assimilatory nitrate pathway, while nitrate exerts a positive effect. This pattern has been confirmed by RT-PCR. In the presence of both NO3− and NH4+, NH4+ was preferentially consumed, but NO3− uptake was not completely inhibited by NH4+ at prolonged time scale. The addition of MSX to NH4+ or NO3− cultures results in an increase of Nas and NiR activities, suggesting that NH4+ assimilation, rather than NH4+ per se, has a negative effect on assimilatory nitrate reduction in Hfx. mediterranei.


Biocatalysis and Biotransformation | 2004

Stability and Enzymatic Studies of Glucose Dehydrogenase from the Archaeon Haloferax mediterranei in reverse micelles

Carmen Pire; Frutos C. Marhuenda-Egea; Julia Esclapez; Luis A. Alcaraz; Juan Ferrer; María José Bonete

Reverse micelles were used as a cytoplasmic model to study the kinetics of an extreme halophilic enzyme such as the recombinant glucose dehydrogenase from the Archaeon Haloferax mediterranei. This enzyme was solubilized in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as co-surfactant. Glucose dehydrogenase retained its catalytic properties in this organic medium, showing good stability at low water content, even at low salt concentration (125 mM NaCl). The dependence of the enzymatic activity on the molar water surfactant ratio (w0=[H2O]/[surfactant]) increased with rising water content. Surprisingly, the activity of this extreme halophilic enzyme did not depend on the salt concentration in reverse micelles. The kinetic of the enzymatic oxidation of β-D-glucose to D-glucono-1,5-lactone using NADP+ as coenzyme for the glucose dehydrogenase from Haloferax mediterranei was also studied in the reverse micellar system.


Journal of Biotechnology | 2001

Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium.

Frutos C. Marhuenda-Egea; Sonsoles Piera-Velázquez; Chiquinquirá Cadenas; Eduardo Cadenas

Alkaline p-nitrophenylphosphate phosphatase from the halophilic archaeon Halobacterium salinarum (earlier halobium) was solubilised in organic medium using reversed micelles of hexadecyltrimethylammonium bromide in cyclohexane, with 1-butanol as co-surfactant. The stability of alkaline p-nitrophenylphosphate phosphatase in this system was studied at different conditions, w(0) ([H(2)O]/[surfactant]), salt concentration, with and without Mn(+2). At all the conditions assayed, alkaline p-nitrophenylphosphate phosphatase was more stable in reversed micelles than in bulk aqueous solution (at 25 degrees C). The stabilisation effect of the reversed micelles was dramatic when the enzyme was dialysed against Mn(+2)-free buffer since the enzyme lost all the activity within 90 min in aqueous medium, but it retained approximately 72% of the initial enzymatic activity for 90 min in reversed micelles.


Chemosphere | 2010

Estimation of phosphorus content and dynamics during composting: Use of near infrared spectroscopy

Luis Galvez-Sola; Javier Morales; Asunción Mayoral; Frutos C. Marhuenda-Egea; Encarnación Martínez-Sabater; M.D. Pérez-Murcia; M.A. Bustamante; C. Paredes; R. Moral

The content and chemical forms of P in compost are essential variables for its proper management with an agricultural purpose, especially considering the increasing P over-fertilization in agrosystems. In this study, the estimation of P content and dynamics in different composting scenarios was developed using near infrared reflectance spectroscopy (NIRS) coupled with a statistical tool for calibration, a penalized signal regression. Samples were analyzed on total P and partitioned using NaOH-solution (31)P NMR spectroscopy quantifying pyrophosphate, orthophosphate, orthophosphate diesters, phospholipids, and orthophosphate monoesters pools. According to the results obtained, total P content (r(2)=0.99 and root mean square error of cross-validation=0.53) and P forms can be estimated during composting using NIRS, as well as in the mature product, orthophosphate and orthophosphate monoesters being the most abundant P forms throughout the experiment. Penalized signal regression allows detecting the significant wavenumbers in each composting period, and also with the different P pools in the composting pile depending on time.

Collaboration


Dive into the Frutos C. Marhuenda-Egea's collaboration.

Top Co-Authors

Avatar

R. Moral

Universidad Miguel Hernández de Elche

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Paredes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M.A. Bustamante

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge