Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fukashi Kohori is active.

Publication


Featured researches published by Fukashi Kohori.


Journal of Controlled Release | 1998

Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide).

Fukashi Kohori; Kiyotaka Sakai; Takao Aoyagi; Masayuki Yokoyama; Yasuhisa Sakurai; Teruo Okano

The thermally sensitive block copolymer, poly(N-isopropylacrylamide-b-dl-lactide) (PIPAAm-PLA), was synthesized by ring-opening polymerization of dl-lactide initiated from hydroxy-terminated poly (N-isopropylacrylamide) (PIPAAm). A PIPAAm bearing a single terminal hydroxyl group was prepared by telomerization using 2-hydroxyethanethiol as a chain-transfer agent. Successful preparation of PIPAAm and the PIPAAm-PLA block copolymer was verified by gel permeation chromatography (GPC) and 1H-NMR spectroscopy. Polymeric micelles were prepared from block copolymers using a dialysis method. Their solutions showed reversible changes in optical properties: transparent below a lower critical solution temperature (LCST) and opaque above the LCST. Dynamic light scattering measurements were used to observe the formation of micellar structures approximately 40 nm in diameter, which do not change between 20 degreesC and 30 degreesC. Above the LCST, polymer micelles aggregated, a phenomenon found to be reversible since the aggregates dissociated again by cooling below the LCST. Further observations using atomic force microscopy (AFM) confirmed this behaviour. The properties of this block copolymer system are interesting from both applied and fundamental perspectives, particularly for active targeting as drug carriers.


Colloids and Surfaces B: Biointerfaces | 1999

Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N- dimethylacrylamide)-b-poly(D,L-lactide)

Fukashi Kohori; Kiyotaka Sakai; Takao Aoyagi; Masayuki Yokoyama; Masayuki Yamato; Yasuhisa Sakurai; Teruo Okano

Abstract Adriamycin (ADR)-loaded thermally responsive polymeric micelles composed of poly( N -isopropylacrylamide- co - N , N -dimethylacrylamide)- b -poly( d,l -lactide) were prepared by dialysis from its dimethylacetamide solution against water. Microfiltration was successfully applied to removal of block copolymer associates, which were smaller than micellar structures. By this microfiltration polymeric micelles showing a lower critical solution temperature (LCST) at 40°C in phosphate buffered saline was obtained with a monodispersed size distribution of 69.2 nm in cumulant average diameter. ADR-loaded micelles released more ADR at 42.5°C (above the LCST) than at 37°C (below the LCST). ADR-loaded micelles did not show much cytotoxic activity against bovine aorta endothelial cells at 37°C, in contrast to high cytotoxicity at 42.5°C. On the other hand, free ADR expressed high cytotoxicity at both the incubation temperatures. Thus, thermally responsive polymeric micelles showed distinct control of ADR cytotoxic activity by temperature, while free ADR did not. From these results, an effective target therapy against solid tumors is feasible for these polymeric micelles by a combination of selective delivery to tumor sites based on stable micellar structures at 37°C and enhanced cytotoxic activity of these drug-loaded micelles at 42.5°C by local heating at tumor sites.


Journal of Controlled Release | 2002

Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems.

Fukashi Kohori; Masayuki Yokoyama; Kiyotaka Sakai; Teruo Okano

For the efficient and well-controlled incorporation of the anti cancer drug adriamycin (ADR) into the inner core of a thermo-responsive polymeric micelle carrier system, we have analyzed and optimized the incorporation procedure in this paper. A dialysis method was used for preparing the micelle solution and ADR incorporation simultaneously. Quantities of ADR and triethylamine (TEA) were varied and the effects of their quantities were analyzed. Solvent composition at the starting time of dialysis was also varied. The initial dialysis condition, solvent with 40% water, brought about the largest amount and yield of ADR incorporation. With the initial 40% water content, it was considered that the block polymers formed a micelle-like association with a swollen hydrophobic core. This swollen core may be suitable for a large amount of ADR incorporation, since this core, swollen by an organic solvent-water mixture, is expected to show a liquid-state character to allow ADR molecules entry into the cores. By starting the dialysis procedure at this 40% water content, this swollen core suitable for the ADR incorporation is considered to be maintained for a much longer period than a case starting with a polymer-ADR solution in a solvent with a water content of less than 40%, and, therefore, ADR is expected to be incorporated efficiently. Preparation temperature of 20-25 degrees C was found to provide the most effective ADR incorporation in this thermo-responsive polymeric micelle system. These results indicate that the efficient incorporation of ADR can be achieved in consideration of the dynamic micelle formation and drug incorporation processes.


Biomaterials | 2004

Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film.

Masayo Hayama; Ken Yamamoto; Fukashi Kohori; Tsutomu Uesaka; Yoshiyuki Ueno; Hiroyuki Sugaya; Ichiro Itagaki; Kiyotaka Sakai

We revealed morphology and physicochemical behavior of a widely used powerful hydrophilizing agent, polyvinylpyrrolidone (PVP), present on polysulfone (PS)/PVP films by atomic force microscopy (AFM). This is the first time such clear PS/PVP phase-separated morphology was observed by nanoscopic technique. The film surfaces were observed by the identical observation mode, probe and scanning conditions to reveal the change of PVP morphology and behavior between dry and wet conditions. Morphology was related to biocompatibility by combining AFM data with results of surface element composition, contact angle, adhesion amount of rabbit platelet and relative amount of adsorbed fibrinogen. PVP nano-particles of one or several molecules were formed on the dry PS/PVP film surfaces. Amount of PVP present on the surfaces increased with the molecular weight of PVP. At a mixed amount of 1-5 wt%, PVP K90 formed crowded particles on the dry surface. When wet, they swelled, followed by their union to produce a smooth surface leading to improved biocompatibility. The highest biocompatibility with excellent mechanical strength is achieved by blending the highest molecular weight PVP K90 at 1-5 wt%.


Journal of Membrane Science | 2002

AFM observation of small surface pores of hollow-fiber dialysis membrane using highly sharpened probe

Masayo Hayama; Fukashi Kohori; Kiyotaka Sakai

Abstract Determining pore size distribution is important for characterization of a dialysis membrane. However, conventional microscopic techniques cannot present a sufficient image for determining pore size distribution. In the present study, tapping mode atomic force microscopy (TMAFM) has been shown to be a powerful tool for observing and evaluating the small surface pores of a hollow-fiber dialysis membrane. Sample fixing technique described below and a highly sharpened probe have made it possible to observe small pores on a soft and undulant surface of a dialysis membrane. This is the first time that clear TMAFM images of surface pores of a hollow-fiber dialysis membrane at such high resolution have been presented. Pore diameter was determined by image analysis. Average pore diameter of APS-150 (Asahi-kasei, Japan) determined by TMAFM was compared with those by field emission scanning electron microscopy (FESEM) and by the Hagen–Poiseuille equation. The average pore diameter of APS-150 determined by TMAFM was slightly higher than that by FESEM. The average pore diameter determined by the Hagen–Poiseuille equation was intermediate between values for that of inside and outside surfaces determined by TMAFM.


Journal of Membrane Science | 2003

Optimum dialysis membrane for endotoxin blocking

Masayo Hayama; Takehiro Miyasaka; Seiichi Mochizuki; Hiroko Asahara; Ken Yamamoto; Fukashi Kohori; Katsuhiko Tsujioka; Kiyotaka Sakai

Abstract We have reported a novel method of visualizing endotoxin (Et) distribution inside an Et-blocking filtration membrane using both fluorescence-labeled Et and a confocal laser scanning fluorescence microscope (CLSFM) in our previous paper [J. Membr. Sci. 210 (2002) 45]. The objective of the present study is to clarify Et-blocking mechanism of dialysis membranes. Six kinds of dialysis membranes with varying materials (hydrophilic and hydrophobic) and varying structures (pore diameter, skin layer location and thickness, and water content) were evaluated by CLSFM together with other techniques such as atomic force microscopy (AFM). Physicochemical property of a membrane material affects Et-adsorbing efficiency, and further membrane structure affects Et-plugging efficiency. Rejected Et distribution in the membranes with varying materials and structures is successfully visualized using fluorescence-labeled Et by CLSFM. Et adsorption on the membranes occurs first, followed by the narrowing of their pores, and afterward pore plugging is continued. Adsorption plays a vital role in Et-blocking. Double skin layer structure is valid for preventing of Et contamination than only inner skin layer structure because the double skin layer structure blocks Et more farther from blood-side surfaces than the only inner skin layer structure.


Journal of Membrane Science | 2002

Visualization of distribution of endotoxin trapped in an endotoxin-blocking filtration membrane

Masayo Hayama; Takehiro Miyasaka; Seiichi Mochizuki; Hiroko Asahara; Katsuhiko Tsujioka; Fukashi Kohori; Kiyotaka Sakai; Yoichi Jinbo; Masashi Yoshida

Abstract Since the finding of β 2 -microglobulin as a causal substance in the carpal tunnel syndrome of chronic hemodialysis patients, removal of β 2 -microglobulin has been performed using highly permeable dialysis membranes with larger pores. Such large-pore membranes tend to allow endotoxins (Et), harmful substances contained in dialysate, to enter blood. At present, as a countermeasure, Et-blocking filtration membranes are used to remove Et from dialysate. However, Et removal mechanism by these membranes has not been clarified yet. The objective of this study is thus to visualize distribution of fluorescence-labeled Et trapped inside the polyester–polymer alloy (PEPA) membrane, a widely used Et-blocking filtration membrane using a confocal laser scanning fluorescence microscope (CLSFM). Et were observed mainly in the outer skin layer of the hollow fiber, while some in the void and inner skin layers. No Et were present inside the hollow fiber. In conclusion, we succeeded in visualization of Et distribution inside the Et-blocking filtration membrane using CLSFM. This novel visualization technique may allow evaluation of distribution of Et trapped inside various kinds of Et-blocking filtration membranes.


Journal of Artificial Organs | 2005

Hollow-fiber blood-dialysis membranes: superoxide generation, permeation, and dismutation measured by chemiluminescence.

Ken Yamamoto; Kazuyoshi Kobayashi; Kosuke Endo; Takehiro Miyasaka; Seiichi Mochizuki; Fukashi Kohori; Kiyotaka Sakai

The interaction of blood with a material surface results in activation of the bodys humoral immune system and the generation of reactive oxygen species (ROS). It has recently become clear that ROS are central to the pathology of many diseases. In this study, we evaluated the superoxide generation, permeation, and dismutation in hollow-fiber dialysis membranes by using 2-methyl-6-p-methoxyphenylethynyl-imidazopyrazinone (MPEC) as a superoxide-reactive chemiluminescence producer and an optical fiber probe to detect the resulting chemiluminescence in the hollow fiber lumen. We measured the superoxide generated when bovine blood leukocytes were brought into contact with dialysis membranes. Superoxide permeation was determined by measuring MPEC chemiluminescence in the hollow fiber lumen using an optical fiber probe. Additionally, superoxide dismutation was evaluated by examining the difference in superoxide permeability for membranes with and without vitamin E coating. Superoxide generation varies for different membrane materials, depending on the membranes biocompatibility. Superoxide permeability depends on the diffusive permeability of membranes. No marked decrease in superoxide permeability was observed among membrane materials. The superoxide permeability of vitamin E-coated membrane was smaller than that of uncoated membrane. The antioxidant property of vitamin E-coated membranes is hence effective in causing superoxide dismutation.


Journal of Artificial Organs | 2005

Membrane fouling and dialysate flow pattern in an internal filtration-enhancing dialyzer

Ken Yamamoto; Michihito Hiwatari; Fukashi Kohori; Kiyotaka Sakai; Makoto Fukuda; Tatsuo Hiyoshi

For efficient removal of large molecular weight solutes by dialysis, several types of internal filtration-enhancing dialyzers (IFEDs) are commercially available. However, in a pressure-driven membrane separation process (i.e., filtration), membrane fouling caused by adhesion of plasma proteins is a severe problem. The objective of the present study is to investigate the effects of internal filtration on membrane fouling based on the membranes pure-water permeability, diffusive permeability, and sieving coefficient. Hemodialysis experiments were performed with two different dialyzers, IFEDs and non-IFEDs. Local membrane fouling in each dialyzer was evaluated by measuring the pure-water permeability, the diffusive permeability, and the sieving coefficient of native membranes and membranes treated with bovine blood. The effects of packing ratio on dialysate flow pattern were also evaluated by measuring the time required for an ion tracer to reach electrodes placed in the dialyzers. In the IFED, membrane fouling caused by protein adhesion is increased because of enhanced internal filtration only at the early stage of dialysis, and this fouling tends to occur only near the dialysate outlet port. However, enhanced internal filtration has little effect on measured membrane transfer parameters.


Journal of Artificial Organs | 2001

Computer-aided design of hollow-fiber dialyzers

Yusuke Suzuki; Fukashi Kohori; Kiyotaka Sakai

Blood and dialysate flow patterns in hollow-fiber dialyzers are complicated, and hence the flow patterns and mass transfer are difficult to analyze theoretically. Consequently, dialyzers are usually developed by a trial-and-error method. We attempt to design dialyzers by computer simulation analysis in this work. Blood-side and dialysate-side flows were modeled using the Hagen-Poiseuille equation and the Blake-Kozeny equation, respectively. These flow patterns were evaluated as pressure drop and velocity distribution. The mass transfer rate was evaluated as solute clearance. Computed values of the pressure drops and clearance for urea and vitamin B12 were found to agree closely with those obtained experimentally. We evaluated the influences of the inner diameter of hollow fibers, module geometry, and void fraction on the pressure drop and clearance, and computer-aided design was performed.

Collaboration


Dive into the Fukashi Kohori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masayuki Yokoyama

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Teruo Okano

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge