Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. A. Carini is active.

Publication


Featured researches published by G. A. Carini.


Applied Physics Letters | 2006

Effect of Te precipitates on the performance of CdZnTe detectors

G. A. Carini; A. E. Bolotnikov; G. S. Camarda; Gomez W. Wright; R. B. James; Li Li

Measurements using the National Synchrotron Light Source provided a detailed comparisons of the microscale detector response and infrared microscopy images for CdZnTe Frisch-ring x-ray and gamma detectors. Analysis of the data showed conclusively that local deteriorations of the electron charge collection and x-ray device response fully correlate with the presence of Te precipitates as seen in the IR images. Effects of the surface processing conditions on the detector performance were also clearly observed.


IEEE Transactions on Nuclear Science | 2007

Characterization of Traveling Heater Method (THM) Grown

Henry Chen; Salah Awadalla; Jason Mackenzie; Robert Redden; Glenn Bindley; A. E. Bolotnikov; G. S. Camarda; G. A. Carini; R. B. James

High-performance semi-insulating single crystals of n-type (CZT) were grown using the traveling heater method (THM). X-ray and -ray detector configurations fabricated from this material have a room-temperature mean energy resolution of 4.3% FWHM for a source (122 keV) and uniform pixel-to-pixel response on monolithic 20205 pixellated detectors. Energy resolution of 1% FWHM for (662keV) has been measured on virtual Frisch-grid 4411 devices useful for homeland security applications. Additional characterization techniques including mobility-lifetime measurements, infrared microscopy, X-ray topography, and OPTICAL Deep Level Transient Spectroscopy (ODLTS) have demonstrated the superior quality of this THM CZT.


ieee nuclear science symposium | 2006

{\hbox{Cd}}_{0.9}{\hbox{Zn}}_{0.1}{\hbox{Te}}

A. E. Bolotnikov; G. S. Camarda; G. A. Carini; Y. Cui; K. T. Kohman; L. Li; M. B. Salomon; R. B. James

We studied the effects of small, <20 mum, Te inclusions on the energy resolution of CdZnTe gamma-ray detectors using a highly collimated X-ray beam and gamma-rays, and modeled them via a simplified geometrical approach. Previous reports demonstrated that Te inclusions of about a few microns in diameter degraded the charge-transport properties and uniformity of CdZnTe detectors. The goal of this work was to understand the extent to which randomly distributed Te-rich inclusions affect the energy resolution of CZT detectors, and to define new steps to overcome their deleterious effects. We used a phenomenological model, which depends on several adjustable parameters, to reproduce the experimentally measured effects of inclusions on energy resolution. We also were able to bound the materials-related problem and predict the enhancement in performance expected by reducing the size and number of Te inclusions within the crystals.


Proceedings of SPIE | 2012

Crystals

P. Hart; Sébastien Boutet; G. A. Carini; Mikhail Dubrovin; B. Duda; David M. Fritz; G. Haller; R. Herbst; Sven Herrmann; Chris Kenney; N. Kurita; Henrik T. Lemke; Marc Messerschmidt; Martin Nordby; J. Pines; Don Schafer; Matt Swift; M. Weaver; Garth J. Williams; Diling Zhu; Niels van Bakel; John Morse

The Linear Coherent Light Source (LCLS), a free electron laser operating from 250eV to10keV at 120Hz, is opening windows on new science in biology, chemistry, and solid state, atomic, and plasma physics1,2. The FEL provides coherent x-rays in femtosecond pulses of unprecedented intensity. This allows the study of materials on up to 3 orders of magnitude shorter time scales than previously possible. Many experiments at the LCLS require a detector that can image scattered x-rays on a per-shot basis with high efficiency and excellent spatial resolution over a large solid angle and both good S/N (for single-photon counting) and large dynamic range (required for the new coherent x-ray diffractive imaging technique3). The Cornell-SLAC Pixel Array Detector (CSPAD) has been developed to meet these requirements. SLAC has built, characterized, and installed three full camera systems at the CXI and XPP hutches at LCLS. This paper describes the camera system and its characterization and performance.


Structural Dynamics | 2015

Performance-limiting Defects in CdZnTe Detectors

Andy Aquila; A. Barty; Christoph Bostedt; Sébastien Boutet; G. A. Carini; Daniel P. DePonte; P. S. Drell; Sebastian Doniach; K. H. Downing; T. Earnest; Hans Elmlund; Veit Elser; M. Gühr; Janos Hajdu; Jerome Hastings; Stefan P. Hau-Riege; Zhirong Huang; E. E. Lattman; Filipe R. N. C. Maia; Stefano Marchesini; A. Ourmazd; C. Pellegrini; Robin Santra; Ilme Schlichting; Christian G. Schroer; John C. Spence; I. A. Vartanyants; Soichi Wakatsuki; William I. Weis; Garth J. Williams

Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.


IEEE Transactions on Nuclear Science | 2006

The CSPAD megapixel x-ray camera at LCLS

A. E. Bolotnikov; G.C. Camarda; G. A. Carini; Michael Fiederle; L. Li; Douglas S. McGregor; W.J. McNeil; Gomez W. Wright; R. B. James

The performance characteristics of Frisch-ring CdZnTe (CZT) detectors are described and compared with other types of CZT devices. The Frisch-ring detector is a bar-shaped CZT crystal with a geometrical aspect ratio of /spl sim/1:2. The side surfaces of the detector are coated with an insulating layer followed by a metal layer deposited directly upon the insulator. The simple design operates as a single-carrier device. Despite the simplicity of this approach, its performance depends on many factors that are still not fully understood. We describe results of testing several detectors fabricated from CZT material produced by different vendors and compare the results with numerical simulations of these devices.


Journal of Synchrotron Radiation | 2015

The linac coherent light source single particle imaging road map

Gabriel Blaj; P. Caragiulo; G. A. Carini; Sebastian Carron; A. Dragone; Dietrich Freytag; G. Haller; P. Hart; J. Hasi; R. Herbst; S. Herrmann; Chris Kenney; B. Markovic; K. Nishimura; S. Osier; J. Pines; B. Reese; J. Segal; A. Tomada; M. Weaver

This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented.


IEEE Transactions on Nuclear Science | 2009

Performance characteristics of Frisch-ring CdZnTe detectors

G. A. Carini; Wei Chen; G. De Geronimo; Jessica A. Gaskin; Jeffrey W. Keister; Z. Li; Brian D. Ramsey; P. Rehak; D. P. Siddons

Several sets of hexagonal Silicon Drift Detector (SDD) arrays were produced by Brookhaven National Laboratory (BNL) and by the commercial vendor, KETEK. These detector arrays were tested at BNL. Each array consists of 14 independent SDD detectors (pixels) and two additional test pixels located at two corners of the array. The side of the detector upon which the X-ray radiation is incident (window side) has a thin junction covering the entire active area. The opposite side (device side) contains a drift-field electrode structure in the form of a hexagonal spiral and an electron collecting anode. There are four guard rings surrounding the 14-pixel array area on each side of the detector. Within each array, seven pixels have aluminum field plates - interrupted spirals that stabilize the electric potential under the Si- SiO2 interface, while the other seven do not. Three bias voltages are applied to control the drift field in the silicon volume; one is applied to a rectifying contact surrounding the central anode (one for each pixel), one is applied to the detector entrance window (common to the full array), and a third bias is applied to a contact on the outer portion of the spiral, common to all pixels in the array. Some arrays were recently tested in NSLS beam line U3C at BNL. For this work, we installed the complete assemblies in the vacuum and cooled them to -27degC. During this beam run, we collected spectra for energies ranging between 350 and 900 eV in several pixels, some with field plates and others without. The detailed testing results of several arrays are reported here.


Proceedings of SPIE | 2005

X‐ray detectors at the Linac Coherent Light Source

A. E. Bolotnikov; G. S. Camarda; G. A. Carini; Michael Fiederle; L. Li; Gomez W Wright; R. B. James

Pulse shape analysis is proved to be a powerful tool to characterize the performance of CdZnTe devices and understand their operating principles. It allows one to investigate the device configurations, electron transport properties, effects governing charge collection, electric-field distributions, signal charge formation, etc. This work describes an application of different techniques based on the pulse shape measurements to characterize pixel, coplanar-grid, and virtual Frisch-grid devices and understand the electronic properties of CZT material provided by different vendors. We report new results that may explain the performance limits of these devices.


IEEE Transactions on Nuclear Science | 2014

Performance of a Thin-Window Silicon Drift Detector X-Ray Fluorescence Spectrometer

G. Deptuch; G. A. Carini; P. Grybos; Piotr Kmon; P. Maj; Marcel Trimpl; D. P. Siddons; R. Szczygiel; R. Yarema

The Vertically Integrated Photon Imaging Chip (VIPIC) project explores opportunities of the three-dimensional integration for imaging of X-rays. The design details of the VIPIC1 chip are presented and are followed by results of testing of the chip. The VIPIC1 chip was designed in a 130 nm process, in which through silicon vias are embedded right after the front-end-of-line processing. The integration of tiers is achieved by the Cu-Cu thermo-compression or Cu-based oxide-oxide bonding. The VIPIC1 readout integrated circuit was designed for high timing resolution, pixel based, X-ray Photon Correlation Spectroscopy experiments typically using 8 keV X-rays at a synchrotron radiation facility. The design was done for bonding a Silicon pixel detector, however other materials can be serviced as long as the positive polarity of charge currents is respected.

Collaboration


Dive into the G. A. Carini's collaboration.

Top Co-Authors

Avatar

A. E. Bolotnikov

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. B. James

Savannah River National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. S. Camarda

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. P. Siddons

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Dragone

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Herrmann

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Haller

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Rehak

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Z. Li

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Tomada

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge