Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Calderini is active.

Publication


Featured researches published by G. Calderini.


Journal of Instrumentation | 2012

Planar pixel sensors for the ATLAS upgrade: beam tests results

J. Weingarten; S. Altenheiner; M. Beimforde; M. Benoit; M. Bomben; G. Calderini; C. Gallrapp; M. George; S. M. Gibson; S. Grinstein; Z Janoska; Jennifer Jentzsch; O. Jinnouchi; T. Kishida; A. La Rosa; V Libov; Anna Macchiolo; G. Marchiori; D. Muenstermann; R. Nagai; G. Piacquadio; B. Ristić; I. Rubinskiy; A Rummler; Y. Takubo; G. Troska; S Tsiskaridtze; I. Tsurin; Yoshinobu Unno; P. Weigell

The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.


ieee nuclear science symposium | 2008

The associative memory for the self-triggered SLIM5 silicon telescope

G. Batignani; S. Bettarini; G. Calderini; R. Cenci; A. Cervelli; F. Crescioli; Mauro Dell'Orso; F. Forti; P. Giannetti; M. A. Giorgi; A. Lusiani; S. Gregucci; G. Marchiori; F. Morsani; N. Neri; E. Paoloni; M. Piendibene; G. Rizzo; L. Sartori; Jj Walsh; E. Yurstev; C. Andreoli; Luigi Gaioni; E. Pozzati; Lodovico Ratti; V. Speziali; M. Manghisoni; V. Re; G. Traversi; M. Bomben

Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment complexity, the accelerator backgrounds and luminosity increase we need increasingly exclusive selections to efficiently select the rare events inside the huge background. We present a fast, high-quality, track-based event selection for the self-triggered SLIM5 silicon telescope. This is an R&D experiment whose innovative trigger will show that high rejection factors and manageable trigger rates can be achieved using fine-granularity, low-material tracking detectors.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2013

Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade

M. Bomben; Alvise Bagolini; M. Boscardin; L. Bosisio; G. Calderini; Jacques Chauveau; G. Giacomini; A. La Rosa; G. Marchiori; Nicola Zorzi

In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost eectiveness, that allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-in-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for dierent sensor congurations. First preliminary results obtained with the test-structures of the production are shown.


ieee nuclear science symposium | 2003

Performance, radiation damage, and future plans of the BABAR silicon vertex tracker

V. Re; D. Kirkby; M. Bruinsma; J. W. Berryhill; S. Burke; D. Callahan; C. Campagnari; B. Dahmes; Daniel E. Hale; P.A. Hart; S. Kyre; S. Levy; O. Long; M. A. Mazur; J. D. Richman; J. Stoner; W. Verkerke; J. Beringer; T. W. Beck; A. M. Eisner; M. Grothe; W. S. Lockman; T. Pulliam; A. Seiden; P. Spradlin; W. Walkowiak; M. G. Wilson; C. Borean; C. Bozzi; L. Piemontese

The BABAR silicon vertex tracker (SVT) has been in operation for four years at the PEP-II electron-positron storage ring. During this time the SVT modules have accumulated a radiation dose up to 2 Mrad. We study the degradation in the performance of the SVT due to this accumulated dose which is highly non uniform across the device and also within the individual silicon detectors. To extrapolate the performance of the device to the future we study separately the effect of the irradiation on silicon detectors, front end integrated circuits and on a complete detector module under controlled radiation conditions, using a /sup 60/Co source and a 0.9 GeV e/sup -/ beam. We compare the results to the data from the SVT. In particular we show the dependence of the charge collection efficiency on the radiation dose even when a small stripe of the module is irradiated up to space charge sign inversion. Since the modules that are located in the plane of the beams will suffer significant radiation damage, we will describe our plans for their replacement in 2005 and for the operation of the SVT through the lifetime of the BABAR experiment.


nuclear science symposium and medical imaging conference | 2015

Performance of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

M. Bomben; Alvise Bagolini; M. Boscardin; L. Bosisio; G. Calderini; Jacques Chauveau; Audrey Ducourthial; G. Giacomini; G. Marchiori; Nicola Zorzi

In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

Status and future plans of the BABAR silicon vertex tracker

V. Re; D. Kirkby; J. W. Berryhill; S. Burke; D. Callahan; C. Campagnari; B. Dahmes; Daniel E. Hale; P.A. Hart; S. Kyre; S. Levy; Owen Rosser Long; Ma Mazur; J. D. Richman; J. Stoner; W. Verkerke; J. Beringer; A. M. Eisner; M. Grothe; W. S. Lockman; T. Pulliam; A. Seiden; W. Walkowiak; M. G. Wilson; C. Borean; C. Bozzi; L. Piemontese; S. Laplace; A. B. Breon; D. N. Brown

Abstract A brief summary of the design goals, description, and performance of the BABAR Silicon Vertex Tracker is given. Results from radiation hardness tests are discussed, which indicate satisfactory operation up to 5 Mrad of accumulated radiation. The local alignment procedure has made significant improvements recently, and four readout sections were recovered during the BABAR shutdown in 2002.


Journal of Instrumentation | 2017

Performance of active edge pixel sensors

M. Bomben; Louis D'eramo; Audrey Ducourthial; André Rummler; G. Calderini; J. Weingarten; M. Boscardin; G. Marchiori; G. Giacomini; Alvise Bagolini; Nicola Zorzi; L. Bosisio

To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.


nuclear science symposium and medical imaging conference | 2013

Performance of irradiated thin edgeless N-on-P planar pixel sensors for ATLAS upgrades

M. Bomben; Alvise Bagolini; M. Boscardin; L. Bosisio; G. Calderini; Jacques Chauveau; G. Giacomini; Alessandro La Rosa; G. Marchiori; Nicola Zorzi

In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, a complete overview of the electrical characterization of several irradiated samples will be discussed. Some comments about detector modules being assembled will be made and eventually some plans will be outlined.


IEEE Transactions on Nuclear Science | 2006

Study of the radiation hardness of irradiated AToM front-end chips of the BaBar silicon vertex tracker

S. Bettarini; M. Bondioli; L. Bosisio; G. Calderini; S. Dittongo; F. Forti; M. Giorgi

The radiation hardness of the AToM chips of the BaBar Silicon Vertex Tracker has been investigated by means of irradiation with photons from a /sup 60/Co source and 0.9 GeV electrons. The increase in noise and the decrease in gain of the amplifier have been measured as a function of the applied capacitive load and the absorbed dose. Different beam intensities have been used to study the effect of different dose rates to the AToM radiation damage. The chip digital functionalities have been tested up to a dose of 5.5 Mrads for the /sup 60/Co photons and 9 Mrads for the 0.9 GeV electrons. In addition a pedestal shift for the irradiated channels has been observed in the test with electrons but is not present in the irradiation with photons. This effect reproduces qualitatively the behavior observed since 2002 in the front-end electronics of the installed BaBar Silicon Vertex Tracker. After some investigation of the chip layout, this peculiar behavior could be associated to radiation damage in a well-identified component of the AToM. The results of the radiation tests are presented and used to extrapolate the lifetime of the installed detector and its performance in the next few years.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000

B physics at LEP

Y. Rozen; F. Pierre; G. Calderini

Abstract The LEP collider provides a rich environment for the study of B-physics. Recent results are presented in the areas of B-hadron lifetimes, B B Oscillation, CP asymmetry and CKM matrix elements determination.

Collaboration


Dive into the G. Calderini's collaboration.

Top Co-Authors

Avatar

V. Re

University of Pavia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Morsani

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. M. Eisner

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge