Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.J. Bishop-Hurley is active.

Publication


Featured researches published by G.J. Bishop-Hurley.


Animal Production Science | 2011

Tracking livestock using global positioning systems – are we still lost?

Dave Swain; Michael Friend; G.J. Bishop-Hurley; R.N. Handcock; Tim Wark

Since the late 1980s, satellite-based global positioning systems (GPS) have provided unique and novel data that have been used to track animal movement. Tracking animals with GPS can provide useful information, but the cost of the technology often limits experimental replication. Limitations on the number of devices available to monitor the behaviour of animals, in combination with technical constraints, can weaken the statistical power of experiments and create significant experimental design challenges. The present paper provides a review and synthesis of using GPS for livestock-based studies and suggests some future research directions. Wildlife ecologists working in extensive landscapes have pioneered the use of GPS-based devices for tracking animals. Wildlife researchers have focussed efforts on quantifying and addressing issues associated with technology limitations, including spatial accuracy, rate of data collection, battery life and environmental factors causing loss of data. It is therefore not surprising that there has been a significant number of methodological papers published in the literature that have considered technical developments of GPS-based animal tracking. Livestock scientists have used GPS data to inform them about behavioural differences in free-grazing experiments. With a shift in focus from the environment to the animal comes the challenge of ensuring independence of the experimental unit. Social facilitation challenges independence of the individual in a group. The use of spatial modelling methods to process GPS data provides an opportunity to determine the degree of independence of data collected from an individual animal within behavioural-based studies. By using location and movement information derived from GPS data, researchers have been able to determine the environmental impact of grazing animals as well as assessing animal responses to management activities or environmental perturbations. Combining satellite-derived remote-sensing data with GPS-derived landscape preference indices provides a further opportunity to identify landscape avoidance and selection behaviours. As spatial livestock monitoring tools become more widely used, there will be a greater need to ensure the data and associated processing methods are able to answer a broader range of questions. Experimental design and analytical techniques need to be given more attention if GPS technology is to provide answers to questions associated with free-grazing animals.


Animal Production Science | 2014

Wireless sensor networks to study, monitor and manage cattle in grazing systems

L. A. González; G.J. Bishop-Hurley; D. Henry; E. Charmley

Monitoring and management of grazing livestock production systems can be enhanced with remote monitoring technologies collecting information with high temporal and spatial detail. However, the potential benefits of such technologies have yet to be realised and challenges still exist with hardware, and data analysis and interpretation. The objective of this paper was to propose analytical methods and demonstrate the value of remotely collected liveweight (LW) and behaviour of beef cattle grazing tropical pastures. Three remote weighing systems were set up at the water troughs to capture LW of three groups of 20 animals for 341 days. LW data reflected short-term effects following the first rain event (>50 mm) at the end of the dry season, which resulted in LW losses of 22 ± 8.8 kg of LW at a rate of –1.54 ± 0.46 kg/day (n = 60). This period was followed by a peak daily LW change (LWC) of +2 kg/day. The remote weighing system also captured longer environmental effects related to seasonal changes in forage quality and quantity with highest LWC during the wet season and weight loss during the dry season. Effects of management on LW and LWC were observed as a result of moving animals to paddocks with more edible forage during the dry season when the negative trend in LWC was reversed after rotating animals. Behavioural monitoring indicated that resting and ruminating took place at camping sites, and foraging resulted in grazing hotspots. Remotely collected LW data captured both short- and long-term temporal changes associated with environmental and management factors, whereas remote monitoring collars captured the spatial distribution of behaviours in the landscape. Wireless sensor networks have the ability to provide data with sufficient detail in real-time making it possible for increased understanding of animal biology and early management interventions that should result in increased production, animal welfare and environmental stewardship.


Animal Production Science | 2016

Development and application of a livestock phenomics platform to enhance productivity and efficiency at pasture

Paul L. Greenwood; G.J. Bishop-Hurley; L. A. González; Aaron Ingham

Our capacity to measure performance- and efficiency-related phenotypes in grazing livestock in a timely manner, ideally in real-time without human interference, has been severely limited. Future demands and constraints on grazing livestock production will require a step change beyond our current approaches to obtaining phenotypic data. Animal phenomics is a relatively new term that describes the next generation of animal trait measurement, including methodologies and equipment used to acquire data on traits, and computational approaches required to turn data into phenotypic information. Phenomics offers a range of emerging opportunities to define new traits specific to grazing livestock, including intake and efficiency at pasture, and to measure many traits simultaneously or at a level of detail previously unachievable in the grazing environment. Application of this approach to phenotyping can improve the precision with which nutritional and other management strategies are applied, enable development of predictive biological traits, and accelerate the rate at which genetic gain is achieved for existing and new traits. In the present paper, we briefly outline the potential for livestock phenomics and describe (1) on-animal sensory-based approaches to develop traits diagnostic of productivity and efficiency, as well as resilience, health and welfare and (2) on-farm methods for data collection that drive management solutions to reduce input costs and accelerate genetic gain. The technological and analytical challenges associated with these objectives are also briefly considered, along with a brief overview of a promising field of work in which phenomics will affect animal agriculture, namely efficiency at pasture.


Animal Production Science | 2016

Intra-ruminal gas-sensing in real time: a proof-of-concept

G.J. Bishop-Hurley; David Paull; Philip Valencia; Leslie Overs; Kourosh Kalantar-zadeh; André-Denis G. Wright; Chris McSweeney

An intra-rumen (IR) gas-sensing system incorporating commercially available gas sensors [methane (CH4), carbon dioxide (CO2) and hydrogen (H2)] and a wireless sensor network was developed to measure rumen gas concentrations of grazing animals in real-time. The IR gas-sensing devices also measure temperature and pressure near the sensors and the design isolates the electronics and battery from exposure to gases. Membranes were developed that allow the desired gases to diffuse through to the sensors while excluding corrosive hydrogen sulfide (H2S). Performance of the prototype IR devices was tested in cattle and sheep fed once a day as a proof-of-concept. Concentrations of expired gases from respiration chambers were compared with the concentrations obtained by the IR gas-sensing device within the rumen digesta. Direct measurements of rumen gas cap samples demonstrate a similar gas profile to that observed with the IR gas-sensing device with the ratio of CO2 : CH4 peaking shortly after feeding and CO2 levels nearly 2.5 times greater than those of CH4. The gas ratio then declines over time to a point when at 23 h post-feeding the concentration of CH4 exceeds that of CO2. The H2 gas concentration in the rumen varied throughout the day reaching maximum levels of 2500 ppm after feeding and declining to 250 ppm over the day. Although the IR device was able to detect H2 in the rumen throughout the entire day, expired H2 was often below the limits of detection in the respiration chamber. Current work is focussed on extending the longevity of the devices in the rumen so that replicated trials can be performed on the accuracy and precision of the measurements.


Animal Reproduction Science | 2014

Using UHF proximity loggers to quantify male-female interactions: a scoping study of estrous activity in cattle.

C.J. O’Neill; G.J. Bishop-Hurley; P.J. Williams; David Reid; Dave Swain

Reproductive efficiency is an important determinant of profitable cattle breeding systems and the success of assisted reproductive techniques (ART) in wildlife conservation programs. Methods of estrous detection used in intensive beef and dairy cattle systems lack accuracy and remain the single biggest issue for improvement of reproductive rates and such methods are not practical for either large-scale extensive beef cattle enterprises or free-living mammalian species. Recent developments in UHF (ultra high frequency) proximity logger telemetry devices have been used to provide a continuous pair-wise measure of associations between individual animals for both livestock and wildlife. The objective of this study was to explore the potential of using UHF telemetry to identify the reproductive cycle phenotype in terms of intensity and duration of estrus. The study was conducted using Belmont Red (interbred Africander Brahman Hereford-Shorthorn) cattle grazing irrigated pasture on Belmont Research Station, northeastern Australia. The cow-bull associations from three groups of cows each with one bull were recorded over a 7-week breeding season and the stage of estrus was identified using ultrasonography. Telemetry data from bull and cows, collected over 4 8-day logger deployments, were log transformed and analyzed by ANOVA. Both the number and duration of bull-cow affiliations were significantly (P<0.001) greater in estrous cows compared to anestrus cows. These results support the development of the UHF technology as a hands-off and noninvasive means of gathering socio-sexual information on both wildlife and livestock for reproductive management.


Animal | 2017

An assessment of Walk-over-Weighing to estimate short-term individual forage intake in sheep

E. González-García; P. de Oliveira Golini; Philippe Hassoun; François Bocquier; Dominique Hazard; L. A. González; Aaron Ingham; G.J. Bishop-Hurley; P. L. Greenwood

The main limitation for determining feed efficiency of freely grazing ruminants is measurement of daily individual feed intake. This paper describes an investigation that assessed a method for estimating intake of forage based on changes in BW of ewes. A total of 24 dry and non-pregnant Romane ewes (12 hoggets, HOG; mean±SD 51.8±2.8 kg BW; body condition score (BCS) 2.6±0.2; and 12 adults, ADU; 60.4±8.5 kg BW; BCS 2.7±0.8) were selected for the study and moved from their rangeland system to a confined pen with controlled conditions and equipped with individual automatic feeders. The experiment lasted for 28 days (21 days adaptation and 7 days feed intake measurement). Ewes were fed hay and trained to use the electronic feeders (one feeding station per ewe) in which actual daily intake (H intake24) was measured. The pens were designed to maximize movement of trained ewes through an automated Walk-over-Weighing device, by using water and mineral salts as attractants. Total individual intake of hay measured in the automatic feeder at each meal (H intake) was compared with indirect estimates of feed intake determined using differences in the BW of the ewes (∆BW) before and 1 h following morning and afternoon feeding at fixed times. The BW, BCS, H intake, H intake24, as well as plasma non-esterified fatty acids (NEFA), glucose and insulin profiles were determined. The BW was higher in ADU v. HOG but BCS was not affected by parity. The H intake24 was affected by day of experiment as a consequence of reduced availability and intake of water on one day. Plasma glucose, NEFA and insulin were not affected by parity or day of experiment. The H Intake was and ∆BW tended to be higher in the morning in HOG, whereas H intake was and ∆BW tended to be higher in ADU at the afternoon meal. Irrespective of parity or feeding time, there was very strong correlation (r 2=0.93) between H intake and ∆BW. This relationship confirms that our indirect method of estimating individual forage intake was reliable within the strictly controlled conditions of the present experiment. The method appears suitable for use in short-term intensive group feeding situations, and has potential to be further developed for longer-term forage intake studies, with a view to developing a method for freely grazing ruminants.


Applied Animal Behaviour Science | 2007

Using contact logging devices to explore animal affiliations: Quantifying cow–calf interactions

David L. Swain; G.J. Bishop-Hurley


Swain, D.L., Handcock, R.N. <http://researchrepository.murdoch.edu.au/view/author/Handcock, Rebecca.html>, Bishop-Hurley, G.J. and Menzies, D. (2013) Opportunities for improving livestock production with e-Management systems. In: 22nd International Grassland Congress: Revitalising Grasslands to Sustain our Communities, 15 - 19 September 2013, Sydney, Australia | 2013

Opportunities for improving livestock production with e-Management systems

Dave Swain; R.N. Handcock; G.J. Bishop-Hurley; D. Menzies


Journal of Animal Physiology and Animal Nutrition | 2017

Drinking frequency effects on the performance of cattle: a systematic review

L. R. Williams; Emma L. Jackson; G.J. Bishop-Hurley; Dave Swain


Applied Animal Behaviour Science | 2015

Pregnant cattle associations and links to maternal reciprocity

Dave Swain; Kym P. Patison; B.M. Heath; G.J. Bishop-Hurley; A. Finger

Collaboration


Dive into the G.J. Bishop-Hurley's collaboration.

Top Co-Authors

Avatar

Dave Swain

Central Queensland University

View shared research outputs
Top Co-Authors

Avatar

R.N. Handcock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Wark

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter Corke

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Philip Valencia

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Aaron Ingham

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

David Gobbett

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Michael Friend

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Dominique Hazard

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge