G. Sitta Sittampalam
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Sitta Sittampalam.
PLOS ONE | 2015
Jonathan A. Lee; Paul Shinn; Susan Jaken; Sarah Oliver; Francis S. Willard; Steven A. Heidler; Robert B. Peery; Jennifer Oler; Shaoyou Chu; Noel Southall; Thomas S. Dexheimer; Jeffrey K. Smallwood; Ruili Huang; Rajarshi Guha; Ajit Jadhav; Karen L. Cox; Christopher P. Austin; Anton Simeonov; G. Sitta Sittampalam; Saba Husain; Natalie Franklin; David J. Wild; Jeremy J. Yang; Jeffrey J. Sutherland; Craig J. Thomas
Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection (NPC) is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD) phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) (AID 1117321). Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben.
Pharmacological Reviews | 2017
Nathan P. Coussens; John C. Braisted; Tyler Peryea; G. Sitta Sittampalam; Anton Simeonov; Matthew D. Hall
High-throughput screening (HTS) of small-molecule libraries accelerates the discovery of chemical leads to serve as starting points for probe or therapeutic development. With this approach, thousands of unique small molecules, representing a diverse chemical space, can be rapidly evaluated by biologically and physiologically relevant assays. The origins of numerous United States Food and Drug Administration–approved cancer drugs are linked to HTS, which emphasizes the value in this methodology. The National Institutes of Health Molecular Libraries Program made HTS accessible to the public sector, enabling the development of chemical probes and drug-repurposing initiatives. In this work, the impact of HTS in the field of oncology is considered among both private and public sectors. Examples are given for the discovery and development of approved cancer drugs. The importance of target validation is discussed, and common assay approaches for screening are reviewed. A rigorous examination of the PubChem database demonstrates that public screening centers are contributing to early-stage drug discovery in oncology by focusing on new targets and developing chemical probes. Several case studies highlight the value of different screening strategies and the potential for drug repurposing.
Clinical and Translational Science | 2018
Nathan P. Coussens; G. Sitta Sittampalam; Rajarshi Guha; Kyle R. Brimacombe; Abigail Grossman; Thomas Dy Chung; Jeffrey R. Weidner; Terry Riss; O. Joseph Trask; Douglas S. Auld; Jayme L. Dahlin; Viswanath Devanaryan; Timothy L. Foley; James McGee; Steven D. Kahl; Stephen C. Kales; Michelle R. Arkin; Jonathan B. Baell; Bruce Bejcek; Neely Gal‐Edd; Marcie A. Glicksman; Joseph Haas; Philip W. Iversen; Marilu Hoeppner; Stacy Lathrop; Eric W. Sayers; Hanguan Liu; Bart Trawick; Julie McVey; Vance Lemmon
The Assay Guidance Manual (AGM) is an eBook of best practices for the design, development, and implementation of robust assays for early drug discovery. Initiated by pharmaceutical company scientists, the manual provides guidance for designing a “testing funnel” of assays to identify genuine hits using high‐throughput screening (HTS) and advancing them through preclinical development. Combined with a workshop/tutorial component, the overall goal of the AGM is to provide a valuable resource for training translational scientists.
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam
Archive | 2016
Eric Jones; Sam Michael; G. Sitta Sittampalam