Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.W. Stutte is active.

Publication


Featured researches published by G.W. Stutte.


Advances in Space Research | 1996

NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies.

R.M. Wheeler; C.L. Mackowiak; G.W. Stutte; John C. Sager; N.C. Yorio; L.M. Ruffe; Russ E. Fortson; Thomas W. Dreschel; William M. Knott; Kenneth A. Corey

The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASAs Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.


Advances in Space Research | 2003

Farming in space: environmental and biophysical concerns

Oscar Monje; G.W. Stutte; Gregory D. Goins; D.M. Porterfield; Gail E. Bingham

The colonization of space will depend on our ability to routinely provide for the metabolic needs (oxygen, water, and food) of a crew with minimal re-supply from Earth. On Earth, these functions are facilitated by the cultivation of plant crops, thus it is important to develop plant-based food production systems to sustain the presence of mankind in space. Farming practices on earth have evolved for thousands of years to meet both the demands of an ever-increasing population and the availability of scarce resources, and now these practices must adapt to accommodate the effects of global warming. Similar challenges are expected when earth-based agricultural practices are adapted for space-based agriculture. A key variable in space is gravity; planets (e.g. Mars, 1/3 g) and moons (e.g. Earths moon, 1/6 g) differ from spacecraft orbiting the Earth (e.g. Space stations) or orbital transfer vehicles that are subject to microgravity. The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. Improved lighting and sensor technologies will have to be developed and tested for use in space. These developments should also help make crop production in terrestrial controlled environments (plant growth chambers and greenhouses) more efficient and, therefore, make these alternative agricultural systems more economically feasible food production systems.


Journal of Plant Physiology | 2001

Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply.

Guntur V. Subbarao; Raymond M. Wheeler; Lanfang H. Levine; G.W. Stutte

Exposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.


Journal of Plant Nutrition | 1999

How far can sodium substitute for potassium in red beet

G. V. Subbarao; R.M. Wheeler; G.W. Stutte; Lanfang H. Levine

Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.


Phytochemistry | 1995

Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

Jennifer H. Batten; G.W. Stutte; Raymond M. Wheeler

The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmanns Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.


Advances in Space Research | 1997

Accumulation and effect of volatile organic compounds in closed life support systems

G.W. Stutte; R.M. Wheeler

Bioregenerative life support systems (BLSS) being considered for long duration space missions will operate with limited resupply and utilize biological systems to revitalize the atmosphere, purify water, and produce food. The presence of man-made materials, plant and microbial communities, and human activities will result in the production of volatile organic compounds (VOCs). A database of VOC production from potential BLSS crops is being developed by the Breadboard Project at Kennedy Space Center. Most research to date has focused on the development of air revitalization systems that minimize the concentration of atmospheric contaminants in a closed environment. Similar approaches are being pursued in the design of atmospheric revitalization systems in bioregenerative life support systems. in a BLSS one must consider the effect of VOC concentration on the performance of plants being used for water and atmospheric purification processes. In addition to phytotoxic responses, the impact of removing biogenic compounds from the atmosphere on BLSS function needs to be assessed. This paper provides a synopsis of criteria for setting exposure limits, gives an overview of existing information, and discusses production of biogenic compounds from plants grown in the Biomass Production Chamber at Kennedy Space Center.


Journal of Plant Nutrition | 2000

Low potassium enhances sodium uptake in red-beet under moderate saline conditions

Guntur V. Subbarao; R.M. Wheeler; G.W. Stutte; Lanfang H. Levine

Abstract Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio‐regenerative life support systems, being considered for long‐term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red‐beet (Beta vulgaris L. ssp. vulgaris) under moderate Na‐saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re‐circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half‐strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached ‐20 g kg−1 dwt. Lamina K levels decreased from ‐60 g kg−1 dwt at 5.0 mM K to ‐4.0 g kg−1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low‐K treatments. Leaf chlorophyll levels were significantly decreased at low‐K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or growth. Our results also suggest that cv. Ruby Queen can tolerate a much higher Na tissue concentration than cv. Klein Bol before there is any growth reduction.


Advances in Space Research | 1997

Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

C.L. Mackowiak; R.M. Wheeler; G.W. Stutte; N.C. Yorio; John C. Sager

Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Projects Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions.


Advances in Space Research | 1997

Effect of Elevated Carbon Dioxide on Nutritional Quality of Tomato

R.M. Wheeler; C.L. Mackowiak; G.W. Stutte; N.C. Yorio; Wade L. Berry

Tomato (Lycopersicon esculentum Mill.) cvs. Red Robin (RR) and Reimann Philipp (RP) were grown hydroponically for 105 d with a 12 h photoperiod, 26 degrees C/22 degrees C thermoperiod, and 500 micromol m-2 s-1 PPF at either 400, 1200, 5000, or 10,000 micromol mol-1 (0.04, 0.12, 0.50, 1.00 kPa) CO2. Harvested fruits were analyzed for proximate composition, total dietary fiber, nitrate, and elemental composition. No trends were apparent with regard to CO2 effects on proximate composition, with fruit from all treatments and both cultivars averaging 18.9% protein, 3.6% fat, 10.2% ash, and 67.2% carbohydrate. In comparison, average values for field-grown fruit are 16.6% protein, 3.8% fat, 8.1% ash, and 71.5% carbohydrate (Duke and Atchely, 1986). Total dietary fiber was highest at 10,000 micromol mol-1 (28.4% and 22.6% for RR and RP) and lowest at 1000 micromol mol-1 (18.2% and 15.9% for RR and RP), but showed no overall trend in response to CO2. Nitrate values ranged from 0.19% to 0.35% and showed no trend with regard to CO2. K, Mg, and P concentrations showed no trend in response to CO2, but Ca levels increased from 198 and 956 ppm in RR and RP at 400 micromol mol-1, to 2537 and 2825 ppm at 10,000 micromol mol-1. This increase in Ca caused an increase in fruit Ca/P ratios from 0.07 and 0.37 for RR and RP at 400 micromol mol-1 to 0.99 and 1.23 for RR and RP at 10,000 micromol mol-1, suggesting that more dietary Ca should be available from high CO2-grown fruit.


Advances in Space Research | 1996

Volatile organic compounds detected in the atmosphere of NASA's Biomass Production Chamber

Jennifer H. Batten; G.W. Stutte; R.M. Wheeler

Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOCs were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOCs were similar.

Collaboration


Dive into the G.W. Stutte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge