Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Yodh is active.

Publication


Featured researches published by G. Yodh.


Astroparticle Physics | 2000

The AMANDA neutrino telescope: principle of operation and first results

E. Andres; P. Askebjer; S. W. Barwick; R. Bay; Lars Bergström; A. Biron; J. Booth; A. Bouchta; Staffan Carius; M. Carlson; D. F. Cowen; E. Dalberg; T. DeYoung; P. Ekström; B. Erlandson; Ariel Goobar; L. Gray; A. Hallgren; F. Halzen; R. Hardtke; S. Hart; Y. He; H. Heukenkamp; G. C. Hill; P. O. Hulth; S. Hundertmark; J. Jacobsen; Andrew Jones; V. Kandhadai; A. Karle

AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.


The Astrophysical Journal | 2007

TeV gamma-ray sources from a survey of the Galactic plane with Milagro

A. A. Abdo; B. Allen; D. Berley; S. Casanova; C. Chen; D. G. Coyne; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma-Ray Observatory. Eight candidate sources of TeV emission are detected with pretrial significances >4.5 σ in the region of Galactic longitude l [30°, 220°] and latitude b [-10°, 10°]. Four of these sources, including the Crab Nebula and the recently published MGRO J2019+37, are observed with significances >4 σ after accounting for the trials. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources, and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.


The Astrophysical Journal | 2009

The Large-Scale Cosmic-Ray Anisotropy as Observed with Milagro

A. A. Abdo; B. Allen; T. Aune; D. Berley; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) ×10–3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.


The Astrophysical Journal | 2007

Discovery of TeV gamma-ray emission from the Cygnus region of the galaxy

A. A. Abdo; B. Allen; D. Berley; E. Blaufuss; S. Casanova; C. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; I. Gebauer; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. E. Kolterman; L. A. Kelley; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; J. Ryan; F. W. Samuelson; P. M. Saz Parkinson; M. Schneider

The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.


Physical Review Letters | 2008

Discovery of Localized Regions of Excess 10-TeV Cosmic Rays

Aous A. Abdo; B. T. Allen; T. Aune; D. Berley; E. Blaufuss; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.


The Astrophysical Journal | 2009

MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST

A. A. Abdo; B. T. Allen; T. Aune; D. Berley; C. Chen; G. E. Christopher; T. DeYoung; B. L. Dingus; R. W. Ellsworth; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; J. Linnemann; J. E. McEnery; T. Morgan; Allen Mincer; P. Nemethy; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; V. Vasileiou; G. P. Walker; D. A. Williams; G. Yodh

We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.


The Astrophysical Journal | 2008

A MEASUREMENT OF THE SPATIAL DISTRIBUTION OF DIFFUSE TeV GAMMA-RAY EMISSION FROM THE GALACTIC PLANE WITH MILAGRO

Aous A. Abdo; B. T. Allen; T. Aune; D. Berley; E. Blaufuss; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; T. A. Porter; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith

Diffuse � -ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the northern hemisphere sky and for detecting diffuse � -ray emission at very high energies. Here the spatial distributionand thefluxof thediffuse � -rayemission inthe TeVenergyrange withamedian energyof 15TeV for Galactic longitude between 30 � and 110 � and between 136 � and 216 � and for Galactic latitude between � 10 � and 10 � aredetermined.Themeasuredfluxesareconsistentwithpredictionsof theGALPROPmodeleverywhere,except for the Cygnus region (l 2½ 65 � ;85 � � ). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the presence of active cosmic-ray sources accelerating hadrons, which interact with the local dense interstellar medium and produce gamma rays through pion decay. Subject headingg gamma rays: observations


The Astrophysical Journal | 2004

TeV Gamma-Ray Survey of the Northern Hemisphere Sky Using the Milagro Observatory

R. Atkins; W. Benbow; D. Berley; E. Blaufuss; J. Bussons; D. G. Coyne; T. DeYoung; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; Galen R. Gisler; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; L. A. Kelley; C. P. Lansdell; J. Linnemann; J. E. McEnery; R. S. Miller; Allen Mincer; Miguel F. Morales; P. Nemethy; D. Noyes; J. Ryan; F. W. Samuelson; A. Shoup; G. Sinnis

Milagro is a water Cerenkov extensive air shower array that continuously monitors the entire overhead sky in the TeV energy band. The results from an analysis of ~3 yr of data (2000 December-2003 November) are presented. The data have been searched for steady point sources of TeV gamma rays between declinations of 11 and 80°. Two sources are detected, the Crab Nebula and the active galaxy Mrk 421. For the remainder of the northern hemisphere, we set 95% confidence level (CL) upper limits between 275 and 600 mcrab (4.8 × 10-12 to 10.5 × 10-12 cm-2 s-1) above 1 TeV for source declinations between 5° and 70°. Since the sensitivity of Milagro depends on the spectrum of the source at the top of the atmosphere, the dependence of the limits on the spectrum of a candidate source is presented. Because high-energy gamma rays from extragalactic sources are absorbed by interactions with the extragalactic background light, the dependence of the flux limits on the redshift of a candidate source are given. The upper limits presented here are over an order of magnitude more stringent than previously published limits from TeV gamma-ray all-sky surveys.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1993

Point source search techniques in ultra high energy gamma ray astronomy

D. E. Alexandreas; D. Berley; S. D. Biller; G. M. Dion; J. A. Goodman; T.J. Haines; C. M. Hoffman; E. Horch; X.-Q. Lu; C. Sinnis; G. Yodh; W. Zhang

Abstract Searches for point astrophysical sources of ultra high energy (UHE) gamma rays are plagued by large numbers of background events from isotropic cosmic rays. Some of the methods that have been used to estimate the expected number of background events coming from the direction of a possible source are found to contain biases. Search techniques that avoid this problem are described. There is also a discussion of how to optimize the sensitivity of a search to emission from a point source.


The Astrophysical Journal | 2000

Evidence for T[CLC]e[/CLC]V Emission from GRB 970417[CLC]a[/CLC]

R. Atkins; W. Benbow; D. Berley; M. L. Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; Lazar Fleysher; R. Fleysher; Galen R. Gisler; J. A. Goodman; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; Mark L. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; Miguel F. Morales; P. Nemethy; J. Ryan; B. C. Shen; A. Shoup; Constantine Sinnis; A. J. Smith

Milagrito, a detector sensitive to very high energy gamma rays, monitored the northern sky from 1997 February through 1998 May. With a large field of view and a high duty cycle, this instrument was well suited to perform a search for TeV gamma-ray bursts (GRBs). We report on a search made for TeV counterparts to GRBs observed by BATSE. BATSE detected 54 GRBs within the field of view of Milagrito during this period. An excess of events coincident in time and space with one of these bursts, GRB 970417a, was observed by Milagrito. The excess has a chance probability of 2.8 × 10-5 of being a fluctuation of the background. The probability for observing an excess at least this large from any of the 54 bursts is 1.5 × 10-3. No significant correlations were detected from the other bursts.

Collaboration


Dive into the G. Yodh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. M. Hoffman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. L. Dingus

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Shoup

University of California

View shared research outputs
Top Co-Authors

Avatar

D. G. Coyne

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. E. Dorfan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. L. Burman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. W. Barwick

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge