Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel J. Milinovich is active.

Publication


Featured researches published by Gabriel J. Milinovich.


Nature Communications | 2013

Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen

Morten Poulsen; Clarissa Schwab; Bent Borg Jensen; Ricarda M. Engberg; Anja Spang; Nuria Canibe; Ole Højberg; Gabriel J. Milinovich; Lena Fragner; Christa Schleper; Wolfram Weckwerth; P. Lund; Andreas Schramm; Tim Urich

Rumen methanogens are major sources of anthropogenic methane emissions, and these archaea are targets in strategies aimed at reducing methane emissions. Here we show that the poorly characterised Thermoplasmata archaea in bovine rumen are methylotrophic methanogens and that they are reduced upon dietary supplementation with rapeseed oil in lactating cows. In a metatranscriptomic survey, Thermoplasmata 16S rRNA and methyl-coenzyme M reductase (mcr) transcripts decreased concomitantly with mRNAs of enzymes involved in methanogenesis from methylamines that were among the most abundant archaeal transcripts, indicating that these Thermoplasmata degrade methylamines. Their methylotrophic methanogenic lifestyle was corroborated by in vitro incubations, showing enhanced growth of these organisms upon methylamine supplementation paralleled by elevated methane production. The Thermoplasmata have a high potential as target in future strategies to mitigate methane emissions from ruminant livestock. Our findings and the findings of others also indicate a wider distribution of methanogens than previously anticipated.


The ISME Journal | 2012

Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis.

David Berry; Clarissa Schwab; Gabriel J. Milinovich; Jochen Reichert; Karim Ben Mahfoudh; Thomas Decker; Marion Engel; Brigitte Hai; Eva Hainzl; Susanne Heider; Lukas Kenner; Mathias Müller; Isabella Rauch; Birgit Strobl; Michael Wagner; Christa Schleper; Tim Urich; Alexander Loy

Human inflammatory bowel disease and experimental colitis models in mice are associated with shifts in intestinal microbiota composition, but it is unclear at what taxonomic/phylogenetic level such microbiota dynamics can be indicative for health or disease. Here, we report that dextran sodium sulfate (DSS)-induced colitis is accompanied by major shifts in the composition and function of the intestinal microbiota of STAT1−/− and wild-type mice, as determined by 454 pyrosequencing of bacterial 16S rRNA (gene) amplicons, metatranscriptomics and quantitative fluorescence in situ hybridization of selected phylotypes. The bacterial families Ruminococcaceae, Bacteroidaceae, Enterobacteriaceae, Deferribacteraceae and Verrucomicrobiaceae increased in relative abundance in DSS-treated mice. Comparative 16S rRNA sequence analysis at maximum possible phylogenetic resolution identified several indicator phylotypes for DSS treatment, including the putative mucin degraders Akkermansia and Mucispirillum. The analysis additionally revealed strongly contrasting abundance changes among phylotypes of the same family, particularly within the Lachnospiraceae. These extensive phylotype-level dynamics were hidden when reads were grouped at higher taxonomic levels. Metatranscriptomic analysis provided insights into functional shifts in the murine intestinal microbiota, with increased transcription of genes associated with regulation and cell signaling, carbohydrate metabolism and respiration and decreased transcription of flagellin genes during inflammation. These findings (i) establish the first in-depth inventory of the mouse gut microbiota and its metatranscriptome in the DSS colitis model, (ii) reveal that family-level microbial community analyses are insufficient to reveal important colitis-associated microbiota shifts and (iii) support a scenario of shifting intra-family structure and function in the phylotype-rich and phylogenetically diverse Lachnospiraceae in DSS-treated mice.


The ISME Journal | 2008

Microbial ecology of the equine hindgut during oligofructose-induced laminitis

Gabriel J. Milinovich; P. C. Burrell; C. C. Pollitt; A. V. Klieve; Linda L. Blackall; Diane Ouwerkerk; Erika Woodland; Darren J. Trott

Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3–7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.


EPJ Data Science | 2015

Enhancing disease surveillance with novel data streams: challenges and opportunities

Benjamin M. Althouse; Samuel V. Scarpino; Lauren Ancel Meyers; John W. Ayers; Marisa Bargsten; Joan Baumbach; John S. Brownstein; Lauren Castro; Hannah E. Clapham; Derek A. T. Cummings; Sara Y. Del Valle; Stephen Eubank; Geoffrey Fairchild; Lyn Finelli; Nicholas Generous; Dylan B. George; David Harper; Laurent Hébert-Dufresne; Michael A. Johansson; Kevin Konty; Marc Lipsitch; Gabriel J. Milinovich; Joseph D. Miller; Elaine O. Nsoesie; Donald R. Olson; Michael J. Paul; Philip M. Polgreen; Reid Priedhorsky; Jonathan M. Read; Isabel Rodriguez-Barraquer

Novel data streams (NDS), such as web search data or social media updates, hold promise for enhancing the capabilities of public health surveillance. In this paper, we outline a conceptual framework for integrating NDS into current public health surveillance. Our approach focuses on two key questions: What are the opportunities for using NDS and what are the minimal tests of validity and utility that must be applied when using NDS? Identifying these opportunities will necessitate the involvement of public health authorities and an appreciation of the diversity of objectives and scales across agencies at different levels (local, state, national, international). We present the case that clearly articulating surveillance objectives and systematically evaluating NDS and comparing the performance of NDS to existing surveillance data and alternative NDS data is critical and has not sufficiently been addressed in many applications of NDS currently in the literature.


Veterinary Clinics of North America-equine Practice | 2010

Microbial events in the hindgut during carbohydrate-induced equine laminitis.

Gabriel J. Milinovich; A. V. Klieve; C. C. Pollitt; Darren J. Trott

Equine laminitis is the most serious foot disease of the horse, often resulting in death or euthanasia. Laminitis has long been recognized as an affliction of horses, as has the association of this condition with the ingestion of carbohydrates. Research into the pathophysiology of this condition has been facilitated by the development of reliable models for experimentally inducing laminitis, and DNA-based techniques for profiling complex microbiomes have dramatically increased the knowledge of the microbiology of this disease. Recent studies have provided substantial evidence showing equine hindgut streptococcal species to be the most likely causative agent. Although these studies are not definitive, they provide the foundations for future work to determine the source of laminitis trigger factors and their mechanisms of action.


International Journal of Systematic and Evolutionary Microbiology | 2008

Streptococcus henryi sp. nov. and Streptococcus caballi sp. nov., isolated from the hindgut of horses with oligofructose-induced laminitis

Gabriel J. Milinovich; P. C. Burrell; C. C. Pollitt; Anne Bouvet; Darren J. Trott

Four Gram-positive, catalase-negative, coccoid-shaped isolates were obtained from the caecum and rectum of horses with oligofructose-induced equine laminitis. Phenotypic and phylogenetic studies were performed on these isolates. Initial biochemical profiling assigned two of the isolates to Streptococcus bovis. The other two isolates, however, could not be assigned conclusively on the basis of their biochemical profiles. Gene sequence analysis demonstrated that the four new isolates were related most closely to Streptococcus suis based on the 16S rRNA gene and to Streptococcus orisratti based on the manganese-dependent superoxide dismutase gene (sodA). Sequence divergence values from recognized Streptococcus species based on these two genes were >3 and >13%, respectively, for all four isolates. Phylogenetic and phenotypic analyses demonstrated that the four isolates formed two distinct clonal groups that are suggested to represent two novel species of the genus Streptococcus. The names proposed for these organisms are Streptococcus henryi sp. nov. (type strain 126(T) =ATCC BAA-1484(T) =DSM 19005(T)) and Streptococcus caballi sp. nov. (type strain 151(T) =ATCC BAA-1485(T) =DSM 19004(T)).


Environmental Microbiology | 2008

Phylogenetic analysis of Porphyromonas species isolated from the oral cavity of Australian marsupials

Deirdre Mikkelsen; Gabriel J. Milinovich; P. C. Burrell; S. C. Huynh; Lyndall M. Pettett; L. L. Blackall; Darren J. Trott; P. S. Bird

Porphyromonas species are frequently isolated from the oral cavity and are associated with periodontal disease in both animals and humans. Black, pigmented Porphyromonas spp. isolated from the gingival margins of selected wild and captive Australian marsupials with varying degrees of periodontal disease (brushtail possums, koalas and macropods) were compared phylogenetically to Porphyromonas strains from non-marsupials (bear, wolf, coyote, cats and dogs) and Porphyromonas gingivalis strains from humans using 16S rRNA gene sequence analysis. The results of the phylogenetic analysis identified three distinct groups of strains. A monophyletic P. gingivalis group (Group 1) contained only strains isolated from humans and a Porphyromonas gulae group (Group 2) was divided into three distinct subclades, each containing both marsupial and non-marsupial strains. Group 3, which contained only marsupial strains, including all six strains isolated from captive koalas, was genetically distinct from P. gulae and may constitute a new Porphyromonas species.


Aquatic Mammals | 2012

Bacterial Community Structure in the Hindgut of Wild and Captive Dugongs (Dugong dugon)

Karen A. Eigeland; Janet M. Lanyon; Darren J. Trott; Diane Ouwerkerk; Wendy H. Blanshard; Gabriel J. Milinovich; Lisa-Maree Gulino; E. D. Martinez; Samuel Merson; A. V. Klieve

Dugongs (Dugong dugon) are marine mammals that obtain nutrients through hindgut fermentation of seagrass, however, the microbes responsible have not been identified. This study used denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing to profile hindgut bacterial communities in wild dugongs. Faecal samples obtained from 32 wild dugongs representing four size/maturity classes, and two captive dugongs fed on cos lettuce were screened using DGGE. Partial 16S rRNA gene profiles of hindgut bacteria from wild dugong calves and juveniles were grouped together and were different to those in subadults and adults. Marked differences between hindgut bacterial communities of wild and captive dugongs were also observed, except for a single captive whose profile resembled wild adults following an unsuccessful reintroduction to the wild. Pyrosequencing of hindgut communities in two wild dugongs confirmed the stability of bacterial populations, and Firmicutes (average 75.6% of Operational Taxonomic Units [OTUs]) and Bacteroidetes (19.9% of OTUs) dominated. Dominant genera were Roseburia, Clostridium, and Bacteroides. Hindgut microbial composition and diversity in wild dugongs is affected by ontogeny and probably diet. In captive dugongs, the absence of the dominant bacterial DNA bands identified in wild dugongs is probably dependent upon prevailing diet and other captive conditions such as the use of antibiotics. This study represents a first step in the characterisation of a novel microbial ecosystem-the marine hindgut of Sirenia.


BMC Infectious Diseases | 2017

Gut microbiota disturbance during helminth infection: can it affect cognition and behaviour of children?

Vanina Guernier; Bradley Brennan; Laith Yakob; Gabriel J. Milinovich; Archie Clements; Ricardo J. Soares Magalhaes

BackgroundBidirectional signalling between the brain and the gastrointestinal tract is regulated at neural, hormonal, and immunological levels. Recent studies have shown that helminth infections can alter the normal gut microbiota. Studies have also shown that the gut microbiota is instrumental in the normal development, maturation and function of the brain. The pathophysiological pathways by which helminth infections contribute to altered cognitive function remain poorly understood.DiscussionWe put forward the hypothesis that gastrointestinal infections with parasitic worms, such as helminths, induce an imbalance of the gut-brain axis, which, in turn, can detrimentally manifest in brain development. Factors supporting this hypothesis are: 1) research focusing on intelligence and school performance in school-aged children has shown helminth infections to be associated with cognitive impairment, 2) disturbances in gut microbiota have been shown to be associated with important cognitive developmental effects, and 3) helminth infections have been shown to alter the gut microbiota structure. Evidence on the complex interactions between extrinsic (parasite) and intrinsic (host-derived) factors has been synthesised and discussed.SummaryWhile evidence in favour of the helminth-gut microbiota-central nervous system hypothesis is circumstantial, it would be unwise to rule it out as a possible mechanism by which gastrointestinal helminth infections induce childhood cognitive morbidity. Further empirical studies are necessary to test an indirect effect of helminth infections on the modulation of mood and behaviour through its effects on the gut microbiota.


Scientific Reports | 2016

Using Baidu search index to predict dengue outbreak in China

Kangkang Liu; Tao Wang; Zhicong Yang; Xiaodong Huang; Gabriel J. Milinovich; Yi Lu; Qinlong Jing; Yao Xia; Zhengyang Zhao; Yang Yang; Shilu Tong; Wenbiao Hu; Jiahai Lu

This study identified the possible threshold to predict dengue fever (DF) outbreaks using Baidu Search Index (BSI). Time-series classification and regression tree models based on BSI were used to develop a predictive model for DF outbreak in Guangzhou and Zhongshan, China. In the regression tree models, the mean autochthonous DF incidence rate increased approximately 30-fold in Guangzhou when the weekly BSI for DF at the lagged moving average of 1–3 weeks was more than 382. When the weekly BSI for DF at the lagged moving average of 1–5 weeks was more than 91.8, there was approximately 9-fold increase of the mean autochthonous DF incidence rate in Zhongshan. In the classification tree models, the results showed that when the weekly BSI for DF at the lagged moving average of 1–3 weeks was more than 99.3, there was 89.28% chance of DF outbreak in Guangzhou, while, in Zhongshan, when the weekly BSI for DF at the lagged moving average of 1–5 weeks was more than 68.1, the chance of DF outbreak rose up to 100%. The study indicated that less cost internet-based surveillance systems can be the valuable complement to traditional DF surveillance in China.

Collaboration


Dive into the Gabriel J. Milinovich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenbiao Hu

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

C. C. Pollitt

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

P. C. Burrell

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Archie Clements

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Shilu Tong

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar

A. V. Klieve

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. W. van Eps

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge