Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel S. Krigsfeld is active.

Publication


Featured researches published by Gabriel S. Krigsfeld.


Science Translational Medicine | 2013

Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects.

Joshua E. Allen; Gabriel S. Krigsfeld; Patrick A. Mayes; Luv Patel; David T. Dicker; Akshal S. Patel; Nathan G. Dolloff; Evangelos Messaris; Kimberly A. Scata; Wenge Wang; Jun Ying Zhou; Gen Sheng Wu; Wafik S. El-Deiry

TIC10 is a small molecule that activates Foxo3a through dual inactivation of Akt and ERK, up-regulates the expression of the TRAIL gene, an endogenous tumor suppressor, and effectively improves the therapeutic properties and utility of TRAIL as an anticancer therapy. TIC’ing Up the TRAIL TRAIL is a naturally occurring tumor suppressor: It stimulates cell death pathways in a variety of human cancers and thus has been a popular target for the development of anticancer drugs. Previous TRAIL-targeting strategies include synthesis of the recombinant protein and stimulatory antibodies. All of these agents exhibit some of the typical drawbacks of protein-based therapeutics, such as short half-lives and a need to administer the drugs directly into the bloodstream or even into the tumor. Now, Allen and colleagues have discovered a drug, TIC10, which can stimulate production of TRAIL while avoiding the shortcomings of protein-based therapies. The authors demonstrated that TIC10 can increase TRAIL and stimulate the death of multiple types of human cancer cells both in culture and in mice. The drug was equally effective when given orally or intravenously and effectively penetrated the blood-brain barrier to target glioblastoma, a difficult-to-treat brain tumor. Whereas recombinant TRAIL displayed a short half-life of ~30 min, TIC10 activity persisted in the mice for days, allowing for once-a-week dosing. Toxicity analysis in mice showed no detectable adverse effects from treatment with TIC10. The authors also showed that TIC10 boosts TRAIL function through inactivation of the Akt and MEK signaling proteins, which results in translocation of the transcription factor Foxo3a into the cell nucleus, where it stimulates TRAIL gene expression. Before TIC10 can be used to treat patients, the drug will need to be tested in clinical trials to confirm safety and efficacy results from mouse studies. In addition, further work is needed to determine the mechanism by which TIC10 causes the dephosphorylation and resulting inactivation of Akt and MEK. However, the discovery of TIC10 clears a path to versatile TRAIL-based cancer therapies. Recombinant tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is an antitumor protein that is in clinical trials as a potential anticancer therapy but suffers from drug properties that may limit efficacy such as short serum half-life, stability, cost, and biodistribution, particularly with respect to the brain. To overcome such limitations, we identified TRAIL-inducing compound 10 (TIC10), a potent, orally active, and stable small molecule that transcriptionally induces TRAIL in a p53-independent manner and crosses the blood-brain barrier. TIC10 induces a sustained up-regulation of TRAIL in tumors and normal cells that may contribute to the demonstrable antitumor activity of TIC10. TIC10 inactivates kinases Akt and extracellular signal–regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor suppressor TRAIL.


Cancer Biology & Therapy | 2008

TNFSF10 (TRAIL), a p53 target gene that mediates p53-dependent cell death

Kageaki Kuribayashi; Gabriel S. Krigsfeld; Wenge Wang; JIng Xu; Patrick A. Mayes; David T. Dicker; Gen Sheng Wu; Wafik S. El-Deiry

We have identified TNFSF10 (TRAIL) as a p53-transcriptional target gene. There are two p53 DNA-binding sites in the human TNFSF10 promoter region, at 346 and 625 bp upstream of the transcription start site. A human p53-expressing adenovirus (Ad-p53) induced TRAIL mRNA and protein expression in HCT116 p53-/- human colon cancer cells. A human TRAIL-promoter reporter assay showed increased luciferase activity with the promoter vector that contains two p53 DNA-binding motifs, following Ad-p53 infection, compared to the control adenovirus infection. Using HCT116 cells, gene silencing of TNFSF10 by siRNA suppressed caspase 3 and 7 activity, even after treatment with the DNA-damaging chemotherapeutic agent adriamycin. TRAIL protein expression was elevated in adriamycin-treated breast cancer cells. In vivo, TRAIL expression was induced in mouse natural killer cells at 24 hours after systemic treatment with 5-Fluorouracil. p53-dependent TRAIL induction in natural killer cells after chemotherapy exposure provides a link between the tumor suppressor p53 and the host immune response during cancer therapy as well as a paracrine-mediated cell-extrinsic death response. Our findings provide new mechanistic insights into the signaling of p53-dependent cell death and tumor suppression, including the involvement of the host immune system and natural killer cells in vivo in the anti-tumor efficacy of chemotherapy.


PLOS ONE | 2013

Leukocyte Activity Is Altered in a Ground Based Murine Model of Microgravity and Proton Radiation Exposure

Jenine K. Sanzari; Ana L. Romero-Weaver; Gabrielle James; Gabriel S. Krigsfeld; Liyong Lin; Eric S. Diffenderfer; Ann R. Kennedy

Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU) model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose) and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC), lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure) result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and simulated microgravity effects on hematopoietic, specifically immune cells.


Radiation Research | 2013

Acute Hematological Effects of Solar Particle Event Proton Radiation in the Porcine Model

Jenine K. Sanzari; X. S. Wan; A Wroe; S. Rightnar; Keith A. Cengel; Eric S. Diffenderfer; Gabriel S. Krigsfeld; Daila S. Gridley; Ann R. Kennedy

Acute radiation sickness (ARS) is expected to occur in astronauts during large solar particle events (SPEs). One parameter associated with ARS is the hematopoietic syndrome, which can result from decreased numbers of circulating blood cells in those exposed to radiation. The peripheral blood cells are critical for an adequate immune response, and low blood cell counts can result in an increased susceptibility to infection. In this study, Yucatan minipigs were exposed to proton radiation within a range of skin dose levels expected for an SPE (estimated from previous SPEs). The proton-radiation exposure resulted in significant decreases in total white blood cell count (WBC) within 1 day of exposure, 60% below baseline control value or preirradiation values. At the lowest level of the blood cell counts, lymphocytes, neutrophils, monocytes and eosinophils were decreased up to 89.5%, 60.4%, 73.2% and 75.5%, respectively, from the preirradiation values. Monocytes and lymphocytes were decreased by an average of 70% (compared to preirradiation values) as early as 4 h after radiation exposure. Skin doses greater than 5 Gy resulted in decreased blood cell counts up to 90 days after exposure. The results reported here are similar to studies of ARS using the nonhuman primate model, supporting the use of the Yucatan minipig as an alternative. In addition, the high prevalence of hematologic abnormalities resulting from exposure to acute, whole-body SPE-like proton radiation warrants the development of appropriate countermeasures to prevent or treat ARS occurring in astronauts during space travel.


International Journal of Radiation Biology | 2012

The effects of proton radiation on the prothrombin and partial thromboplastin times of irradiated ferrets.

Gabriel S. Krigsfeld; Jenine K. Sanzari; Ann R. Kennedy

Purpose: To determine whether proton radiation affects coagulation. Material and methods: Ferrets were exposed to solar particle event-like proton radiation at doses of 0, 25, 100, or 200 centigray (cGy), and dose rates of 50 cGy/minute (high dose rate or HDR) or 50 cGy/hour (low dose rate or LDR). Plasma was isolated from blood collected prior to radiation exposure and at 3–7 h post-radiation. Prothrombin time (PT) assays and activated partial thromboplastin time (aPTT) assays were performed as were mixing studies to determine the coagulation factors involved. Results: HDR and LDR exposure led to statistically significant increases in PT values. It was determined that the HDR-induced increase in PT was due to Factor VII, while Factors II, V, and VII contributed to the LDR-induced increase in PT values. Only acute LDR exposure caused an increase in aPTT values, which remained elevated for 48 h post-irradiation (which was the latest time assayed in these studies). Mixing studies revealed that Factor IX contributed to the increased aPTT values. A majority of the animals exposed at the LDR had an International Normalized Ratio approaching or surpassing 2.0. Conclusions: PT/aPTT assays resulted in increased clotting times due to different coagulation factors, indicating potential radiation-induced coagulopathy.


Molecular Cancer | 2015

Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway.

Joshua E. Allen; Gabriel S. Krigsfeld; Luv Patel; Patrick A. Mayes; David T. Dicker; Gen Sheng Wu; Wafik S. El-Deiry

BackgroundWe previously reported the identification of ONC201/TIC10, a novel small molecule inducer of the human TRAIL gene that improves efficacy-limiting properties of recombinant TRAIL and is in clinical trials in advanced cancers based on its promising safety and antitumor efficacy in several preclinical models.MethodsWe performed a high throughput luciferase reporter screen using the NCI Diversity Set II to identify TRAIL-inducing compounds.ResultsSmall molecule-mediated induction of TRAIL reporter activity was relatively modest and the majority of the hit compounds induced low levels of TRAIL upregulation. Among the candidate TRAIL-inducing compounds, TIC9 and ONC201/TIC10 induced sustained TRAIL upregulation and apoptosis in tumor cells in vitro and in vivo. However, ONC201/TIC10 potentiated tumor cell death while sparing normal cells, unlike TIC9, and lacked genotoxicity in normal fibroblasts. Investigating the effects of TRAIL-inducing compounds on cell signaling pathways revealed that TIC9 and ONC201/TIC10, which are the most potent inducers of cell death, exclusively activate Foxo3a through inactivation of Akt/ERK to upregulate TRAIL and its pro-apoptotic death receptor DR5.ConclusionThese studies reveal the selective activity of ONC201/TIC10 that led to its selection as a lead compound for this novel class of antitumor agents and suggest that ONC201/TIC10 is a unique inducer of the TRAIL pathway through its concomitant regulation of the TRAIL ligand and its death receptor DR5.


International Journal of Radiation Biology | 2013

Mechanism of hypocoagulability in proton-irradiated ferrets

Gabriel S. Krigsfeld; Alexandria R. Savage; Jenine K. Sanzari; A Wroe; Daila S. Gridley; Ann R. Kennedy

Abstract Purpose: To determine the mechanism of proton radiation- induced coagulopathy. Material and methods: Ferrets were exposed to either solar particle event (SPE)-like proton radiation at a predetermined dose rate of 0.5 Gray (Gy) per hour (h) for a total dose of 0 or 1 Gy. Blood was collected pre- and post-irradiation for a complete blood cell count or a soluble fibrin concentration analysis, to determine whether coagulation activation had occurred. Tissue was stained with an anti-fibrinogen antibody to confirm the presence of fibrin in blood vessels. Results: SPE-like proton radiation exposure resulted in coagulation cascade activation, as determined by increased soluble fibrin concentration in blood from 0.7–2.4 at 3 h, and 9.9 soluble fibrin units (p < 0.05) at 24 h post-irradiation and fibrin clots in blood vessels of livers, lungs and kidneys from irradiated ferrets. In combination with this increase in fibrin clots, ferrets had increased prothrombin time and partial thromboplastin time values post-irradiation, which are representative of the extrinsic/intrinsic coagulation pathways. Platelet counts remained at pre-irradiation values over the course of 7 days, indicating that the observed effects were not platelet-related, but instead likely to be due to radiation-induced effects on secondary hemostasis. White blood cell (WBC) counts were reduced in a statistically significant manner from 24 h through the course of the seven-day experiment. Conclusions: SPE-like proton radiation results in significant decreases in all WBC counts as well as activates secondary hemostasis; together, these data suggest severe risks to astronaut health from exposure to SPE radiation.


Radiation Research | 2013

Effects of Solar Particle Event Proton Radiation on Parameters Related to Ferret Emesis

Jenine K. Sanzari; X. S. Wan; Gabriel S. Krigsfeld; G. L. King; A. Miller; R. Mick; Daila S. Gridley; A Wroe; S. Rightnar; D. Dolney; Ann R. Kennedy

The effectiveness of simulated solar particle event (SPE) proton radiation to induce retching and vomiting was evaluated in the ferret experimental animal model. The endpoints measured in the study included: (1) the fraction of animals that retched or vomited, (2) the number of retches or vomits observed, (3) the latency period before the first retch or vomit and (4) the duration between the first and last retching or vomiting events. The results demonstrated that γ ray and proton irradiation delivered at a high dose rate of 0.5 Gy/min induced dose-dependent changes in the endpoints related to retching and vomiting. The minimum radiation doses required to induce statistically significant changes in retching- and vomiting-related endpoints were 0.75 and 1.0 Gy, respectively, and the relative biological effectiveness (RBE) of proton radiation at the high dose rate did not significantly differ from 1. Similar but less consistent and smaller changes in the retching- and vomiting-related endpoints were observed for groups irradiated with γ rays and protons delivered at a low dose rate of 0.5 Gy/h. Since this low dose rate is similar to a radiation dose rate expected during a SPE, these results suggest that the risk of SPE radiation-induced vomiting is low and may reach statistical significance only when the radiation dose reaches 1 Gy or higher.


Radiation Research | 2013

Is Disseminated Intravascular Coagulation the Major Cause of Mortality from Radiation at Relatively Low Whole Body Doses

Gabriel S. Krigsfeld; Ann R. Kennedy

The mechanism by which radiation exposure leads to death in mammalian organisms remains unknown, although numerous hypotheses have been discussed. At the lowest total body radiation doses leading to mammalian mortality, death occurs from the hematopoietic syndrome (HS). HS is thought to result from the cell killing effects of radiation in the bone marrow that lead to low numbers of circulating blood cells and the resultant HS symptoms, such as infection [from the loss of white blood cells (WBC)] and bleeding (presumably from the loss of platelets). Over approximately the last half century, the dose of ionizing radiation that kills half of an experimental group/exposed population, known as the LD50, has been used as a parameter to compare the radiation sensitivity of various mammalian species. It is well known that the LD50 is highly variable for different mammalian species; however, the bone marrow cells of different species, strains and individuals are known to have remarkably similar sensitivities to the cell killing effects of ionizing radiation (1, 2). These results suggest that the lethal effects of radiation in blood cells may not be the primary mechanism by which the HS causes death. Our results have suggested that radiation induced activation of the coagulation cascade, resulting in a condition known as disseminated intravascular coagulation (DIC), could be the major mechanism by which relatively low doses of radiation could lead to animal, including human, mortality.


International Journal of Radiation Oncology Biology Physics | 2014

Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

Gabriel S. Krigsfeld; Alexandria R. Savage; Paul C. Billings; Liyong Lin; Ann R. Kennedy

PURPOSE The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. METHODS AND MATERIALS Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. RESULTS The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. CONCLUSIONS Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

Collaboration


Dive into the Gabriel S. Krigsfeld's collaboration.

Top Co-Authors

Avatar

Ann R. Kennedy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jenine K. Sanzari

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liyong Lin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Dicker

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joshua E. Allen

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Patrick A. Mayes

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luv Patel

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge