Patrick A. Mayes
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick A. Mayes.
Nature | 2011
Kai Wang; Sharon J. Diskin; Haitao Zhang; Edward F. Attiyeh; Cynthia Winter; Cuiping Hou; Robert W. Schnepp; Maura Diamond; Kristopher R. Bosse; Patrick A. Mayes; Joseph T. Glessner; Cecilia Kim; Edward C. Frackelton; Maria Garris; Qun Wang; Wendy Glaberson; Rosetta M. Chiavacci; Le Nguyen; Jayanti Jagannathan; Norihisa Saeki; Hiroki Sasaki; Struan F. A. Grant; Achille Iolascon; Yael P. Mosse; Kristina A. Cole; Hongzhe Li; Marcella Devoto; Patrick McGrady; Wendy B. London; Mario Capasso
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Kristina A. Cole; Jonathan Huggins; Michael P. LaQuaglia; Chase Hulderman; Mike R. Russell; Kristopher R. Bosse; Sharon J. Diskin; Edward F. Attiyeh; Rachel Sennett; Geoffrey Norris; Marci Laudenslager; Andrew C. Wood; Patrick A. Mayes; Jayanti Jagannathan; Cynthia Winter; Yael P. Mosse; John M. Maris
Neuroblastoma is a childhood cancer that is often fatal despite intense multimodality therapy. In an effort to identify therapeutic targets for this disease, we performed a comprehensive loss-of-function screen of the protein kinome. Thirty kinases showed significant cellular cytotoxicity when depleted, with loss of the cell cycle checkpoint kinase 1 (CHK1/CHEK1) being the most potent. CHK1 mRNA expression was higher in MYC–Neuroblastoma-related (MYCN)–amplified (P < 0.0001) and high-risk (P = 0.03) tumors. Western blotting revealed that CHK1 was constitutively phosphorylated at the ataxia telangiectasia response kinase target site Ser345 and the autophosphorylation site Ser296 in neuroblastoma cell lines. This pattern was also seen in six of eight high-risk primary tumors but not in control nonneuroblastoma cell lines or in seven of eight low-risk primary tumors. Neuroblastoma cells were sensitive to the two CHK1 inhibitors SB21807 and TCS2312, with median IC50 values of 564 nM and 548 nM, respectively. In contrast, the control lines had high micromolar IC50 values, indicating a strong correlation between CHK1 phosphorylation and CHK1 inhibitor sensitivity (P = 0.0004). Furthermore, cell cycle analysis revealed that CHK1 inhibition in neuroblastoma cells caused apoptosis during S-phase, consistent with its role in replication fork progression. CHK1 inhibitor sensitivity correlated with total MYC(N) protein levels, and inducing MYCN in retinal pigmented epithelial cells resulted in CHK1 phosphorylation, which caused growth inhibition when inhibited. These data show the power of a functional RNAi screen to identify tractable therapeutical targets in neuroblastoma and support CHK1 inhibition strategies in this disease.
Cancer Cell | 2012
Guoliang Qing; Bo Li; Annette Vu; Nicolas Skuli; Zandra E. Walton; Xueyuan Liu; Patrick A. Mayes; David R. Wise; Craig B. Thompson; John M. Maris; Michael D. Hogarty; M. Celeste Simon
Oncogenic Myc alters mitochondrial metabolism, making it dependent on exogenous glutamine (Gln) for cell survival. Accordingly, Gln deprivation selectively induces apoptosis in MYC-overexpressing cells via unknown mechanisms. Using MYCN-amplified neuroblastoma as a model, we identify PUMA, NOXA, and TRB3 as executors of Gln-starved cells. Gln depletion in MYC-transformed cells induces apoptosis through ATF4-dependent, but p53-independent, PUMA and NOXA induction. MYC-transformed cells depend on both glutamate-oxaloacetate transaminase and glutamate dehydrogenase to maintain Gln homeostasis and suppress apoptosis. Consequently, either ATF4 agonists or glutaminolysis inhibitors potently induce apoptosis in vitro and inhibit tumor growth in vivo. These results reveal mechanisms whereby Myc sensitizes cells to apoptosis, and validate ATF4 agonists and inhibitors of Gln metabolism as potential Myc-selective cancer therapeutics.
Cancer Biology & Therapy | 2006
Kageaki Kuribayashi; Patrick A. Mayes; Wafik S. El-Deiry
Apoptosis is a cell suicide program that is initiated after cells are exposed to cytotoxic stresses including UV, IR irradiation, chemotherapeutic drugs, hypoxia, serum deprivation and TRAIL. Caspases are the central components of this process. In mammals, caspases involved in apoptotic responses are classified into two groups according to their function and structure. The first group is termed initiator caspases (caspase-2, 8, 9, 10) that contain N-terminal adapter domains which allow for auto-cleavage and activation of downstream caspases. The second group is termed effector or executioner caspases (caspase-3, 6, 7) that lack N-terminal adapter domains and are cleaved and activated by initiator caspases. Lakhani et al., (Science 2006, 311:847-51) have reported that caspase-3 and -7 regulate mitochondorial events in the apoptotic pathway. In this journal club, we summarize the results of the article and include some open questions left in the study.
Science Translational Medicine | 2013
Joshua E. Allen; Gabriel S. Krigsfeld; Patrick A. Mayes; Luv Patel; David T. Dicker; Akshal S. Patel; Nathan G. Dolloff; Evangelos Messaris; Kimberly A. Scata; Wenge Wang; Jun Ying Zhou; Gen Sheng Wu; Wafik S. El-Deiry
TIC10 is a small molecule that activates Foxo3a through dual inactivation of Akt and ERK, up-regulates the expression of the TRAIL gene, an endogenous tumor suppressor, and effectively improves the therapeutic properties and utility of TRAIL as an anticancer therapy. TIC’ing Up the TRAIL TRAIL is a naturally occurring tumor suppressor: It stimulates cell death pathways in a variety of human cancers and thus has been a popular target for the development of anticancer drugs. Previous TRAIL-targeting strategies include synthesis of the recombinant protein and stimulatory antibodies. All of these agents exhibit some of the typical drawbacks of protein-based therapeutics, such as short half-lives and a need to administer the drugs directly into the bloodstream or even into the tumor. Now, Allen and colleagues have discovered a drug, TIC10, which can stimulate production of TRAIL while avoiding the shortcomings of protein-based therapies. The authors demonstrated that TIC10 can increase TRAIL and stimulate the death of multiple types of human cancer cells both in culture and in mice. The drug was equally effective when given orally or intravenously and effectively penetrated the blood-brain barrier to target glioblastoma, a difficult-to-treat brain tumor. Whereas recombinant TRAIL displayed a short half-life of ~30 min, TIC10 activity persisted in the mice for days, allowing for once-a-week dosing. Toxicity analysis in mice showed no detectable adverse effects from treatment with TIC10. The authors also showed that TIC10 boosts TRAIL function through inactivation of the Akt and MEK signaling proteins, which results in translocation of the transcription factor Foxo3a into the cell nucleus, where it stimulates TRAIL gene expression. Before TIC10 can be used to treat patients, the drug will need to be tested in clinical trials to confirm safety and efficacy results from mouse studies. In addition, further work is needed to determine the mechanism by which TIC10 causes the dephosphorylation and resulting inactivation of Akt and MEK. However, the discovery of TIC10 clears a path to versatile TRAIL-based cancer therapies. Recombinant tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is an antitumor protein that is in clinical trials as a potential anticancer therapy but suffers from drug properties that may limit efficacy such as short serum half-life, stability, cost, and biodistribution, particularly with respect to the brain. To overcome such limitations, we identified TRAIL-inducing compound 10 (TIC10), a potent, orally active, and stable small molecule that transcriptionally induces TRAIL in a p53-independent manner and crosses the blood-brain barrier. TIC10 induces a sustained up-regulation of TRAIL in tumors and normal cells that may contribute to the demonstrable antitumor activity of TIC10. TIC10 inactivates kinases Akt and extracellular signal–regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor suppressor TRAIL.
Cancer Biology & Therapy | 2008
Kageaki Kuribayashi; Gabriel S. Krigsfeld; Wenge Wang; JIng Xu; Patrick A. Mayes; David T. Dicker; Gen Sheng Wu; Wafik S. El-Deiry
We have identified TNFSF10 (TRAIL) as a p53-transcriptional target gene. There are two p53 DNA-binding sites in the human TNFSF10 promoter region, at 346 and 625 bp upstream of the transcription start site. A human p53-expressing adenovirus (Ad-p53) induced TRAIL mRNA and protein expression in HCT116 p53-/- human colon cancer cells. A human TRAIL-promoter reporter assay showed increased luciferase activity with the promoter vector that contains two p53 DNA-binding motifs, following Ad-p53 infection, compared to the control adenovirus infection. Using HCT116 cells, gene silencing of TNFSF10 by siRNA suppressed caspase 3 and 7 activity, even after treatment with the DNA-damaging chemotherapeutic agent adriamycin. TRAIL protein expression was elevated in adriamycin-treated breast cancer cells. In vivo, TRAIL expression was induced in mouse natural killer cells at 24 hours after systemic treatment with 5-Fluorouracil. p53-dependent TRAIL induction in natural killer cells after chemotherapy exposure provides a link between the tumor suppressor p53 and the host immune response during cancer therapy as well as a paracrine-mediated cell-extrinsic death response. Our findings provide new mechanistic insights into the signaling of p53-dependent cell death and tumor suppression, including the involvement of the host immune system and natural killer cells in vivo in the anti-tumor efficacy of chemotherapy.
Science Translational Medicine | 2011
Nathan G. Dolloff; Patrick A. Mayes; Lori S. Hart; David T. Dicker; Robin Humphreys; Wafik S. El-Deiry
The breast cancer drug lapatinib increases the sensitivity of colon cancer cells to apoptosis through a HER2- and EGFR-independent mechanism. Coaxing Colon Cancer Cells to an Easy Death In a utopian future, physicians will have a well-stocked arsenal from which to choose the ideal drug for every subtype of cancer. One essential weapon will be agents that trigger apoptosis in cancer cells, overriding their reluctance to die. These will include molecules that activate TRAIL (tumor necrosis factor–related apoptosis-inducing ligand) death receptors, which normally initiate the so-called extrinsic apoptotic pathway, causing cell death. Dolloff et al. have found a way to boost the ability of colon cancer cells to die in response to TRAIL, by pretreating with lapatinib, a drug already approved for use in breast cancer. The sensitizing effect results from actions of the drug other than its ability to inhibit HER2/EGFR (epidermal growth factor receptor family members), its targets in breast cancer. In a panel of TRAIL-resistant colon cancer cells, 2 days of pretreatment with lapatinib sensitized the cells to a subsequent 24-hour treatment with TRAIL, causing substantial caspase activation and cell death. This combined therapy could also suppress tumor growth in mice. But the effectiveness of TRAIL may be limited in the clinic because of its brief half-life. Of higher interest are the antibodies mapatumumab and lexatumumab, which target TRAIL death receptors and are currently being tested in clinical trials. Indeed, these therapeutic antibodies too induce apoptosis more readily after pretreatment of cancer cells with lapatinib. What does lapatinib do to coax these cells to die? Measurements of the levels of the death receptors themselves, DR4 and DR5, show that they are increased after lapatinib treatment via induction of the c-Jun N-terminal kinase (JNK)/c-Jun/activating protein–1 (AP-1) pathway. Although lapatinib was designed as an EGFR- and HER2-targeted agent, the authors suspected that it was not acting through these known targets to promote TRAIL receptor–induced apoptosis. The concentrations required were higher than needed for HER2/EGFR inhibition. Indeed, lapatinib up-regulated TRAIL death receptors and enhanced TRAIL sensitivity in cells that lack EGFR; moreover, the mere inhibition of EGFR and HER2 with other selective inhibitors was not sufficient to enhance TRAIL-induced cancer cell death. If confirmed by clinical validation, this newly described, non-EGFR/HER2–mediated action of lapatinib in sensitizing colon cancer cells to apoptotic stimuli will qualify this drug for a new place among anticancer munitions. Lapatinib, a dual HER2/EGFR (human epidermal growth factor receptor 2/epidermal growth factor receptor) inhibitor, is a recently approved targeted therapy for metastatic breast cancer. Because lapatinib enhances the efficacy of the chemotherapeutic agent capecitabine in breast cancer patients, we tested whether lapatinib also enhances the activity of anticancer agents in colorectal cancer. We found that lapatinib improved the proapoptotic effects of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and two TRAIL receptor agonists, the antibodies mapatumumab and lexatumumab. Tumors from mice treated with a combination of lapatinib and TRAIL exhibited more immunostaining for cleaved caspase-8, a marker of the extrinsic cell death pathway, than did tumors from mice treated with lapatinib or TRAIL alone. Furthermore, combination therapy suppressed tumor growth more effectively than either agent alone. Lapatinib up-regulated the proapoptotic TRAIL death receptors DR4 and DR5, leading to more efficient induction of apoptosis in the presence of TRAIL receptor agonists. This activity of lapatinib was independent of EGFR and HER2. The off-target induction of DR5 by lapatinib resulted from activation of the c-Jun amino-terminal kinase (JNK)/c-Jun signaling axis. This activity of lapatinib on TRAIL death receptor expression and signaling may confer therapeutic benefit when increased doses of lapatinib are used in combination with TRAIL receptor–activating agents.
BioTechniques | 2008
Patrick A. Mayes; David T. Dicker; Yingqiu Y. Liu; Wafik S. El-Deiry
Noninvasive imaging of tumor vascularization in animal models provides an important tool for studying the biology of tumor angiogenesis as well as monitoring the effects of antiangiogenic therapies. Through the use of in vivo multispectral fluorescent imaging, we have discovered a distinct spectral signature associated with blood vessels present in fluorescent tumors in mice. This unique spectral signature allows for the tumor vasculature to be imaged and quantified without the use of vascular imaging probes. This noninvasive vascular imaging technique allows for real-time analysis of tumor vascularization, which provides a powerful and efficient tool for monitoring the effect of antiangiogenic therapies in preclinical animal models.
Cancer Research | 2010
Naomi Balamuth; Andrew K.W. Wood; Qun Wang; Jayanti Jagannathan; Patrick A. Mayes; Zhe Zhang; Zhongxue Chen; Eric Rappaport; Joshua Courtright; Bruce R. Pawel; Barbara L. Weber; Richard Wooster; Eric Sekyere; Glenn M. Marshall; John M. Maris
Cancer genomic studies that rely on analysis of biopsies from primary tumors may not fully identify the molecular events associated with tumor progression. We hypothesized that characterizing the transcriptome during tumor progression in the TH-MYCN transgenic model would identify oncogenic drivers that would be targetable therapeutically. We quantified expression of 32,381 murine genes in nine hyperplastic ganglia harvested at three time points and four tumor cohorts of progressively larger size in mice homozygous for the TH-MYCN transgene. We found 93 genes that showed a linearly increasing or decreasing pattern of expression from the preneoplastic ganglia to end stage tumors. Cross-species integration identified 24 genes that were highly expressed in human MYCN-amplified neuroblastomas. The genes prioritized were not exclusively driven by increasing Myc transactivation or proliferative rate. We prioritized three targets [centromere-associated protein E (Cenpe), Gpr49, and inosine monophosphate dehydrogenase type II] with previously determined roles in cancer. Using siRNA knockdown in human neuroblastoma cell lines, we further prioritized CENPE due to inhibition of cellular proliferation. Targeting CENPE with the small molecular inhibitor GSK923295 showed inhibition of in vitro proliferation of 19 neuroblastoma cell lines (median IC(50), 41 nmol/L; range, 27-266 nmol/L) and delayed tumor growth in three xenograft models (P values ranged from P < 0.0001 to P = 0.018). We provide preclinical validation that serial transcriptome analysis of a transgenic mouse model followed by cross-species integration is a useful method to identify therapeutic targets and identify CENPE as a novel therapeutic candidate in neuroblastoma.
Cancer Biology & Therapy | 2005
Patrick A. Mayes; Latoya Campbell; M. Stacey Ricci; John P. Plastaras; David T. Dicker; Wafik S. El-Deiry
Hypoxia induces Hif-1α and selects for loss of wild-type p53 function, both of which can promote tumor cell survival. We evaluated the ability of TRAIL to induce apoptosis of human tumor cell lines exposed to hypoxia. H460 lung cancer cells express low levels of Hif-1α, stabilize wild-type p53 during hypoxia, and undergo TRAIL-induced apoptosis. In U2OS osteosarcoma or PA1 ovarian teratocarcinoma cells, high levels of Hif-1α and low levels of stable p53 are detected during hypoxia, and cells undergo low levels of TRAIL-induced apoptosis as compared to H460 cells. H460 cells are sensitized to TRAIL-induced apoptosis, whereas U2OS are protected, and little apoptosis is observed in relatively TRAIL-resistant PA1 during hypoxia. Forced expression of Hif-1α is also surprisingly a potent inducer of apoptosis in wild-type p53 expressing H460 cells and further promotes TRAIL-induced apoptosis. TRAIL-sensitive wild-type p53-expressing HCT116 colon carcinoma cells modestly elevate Hif-1α levels and are equally or slightly more sensitive to TRAIL during hypoxia. In contrast, p53-null HCT116 have higher levels of Hif-1α during normoxia and are extremely sensitive to TRAIL, but are protected from TRAIL-induced apoptosis during hypoxia. We hypothesize that a hypoxic tumor microenvironment may alter sensitivity to TRAIL, which may be impacted by Hif-1α levels and p53 status. These findings suggest that particular attention to hypoxic regions of tumors and sensitizers to hypoxia-induced cell death may be required to optimize therapeutic combinations using TRAIL.