Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Villarini is active.

Publication


Featured researches published by Gabriele Villarini.


Bulletin of the American Meteorological Society | 2013

Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States: State of Knowledge

Thomas C. Peterson; Richard R. Heim; Robert M. Hirsch; Dale P. Kaiser; Harold E. Brooks; Noah S. Diffenbaugh; Randall M. Dole; Jason P. Giovannettone; Kristen Guirguis; Thomas R. Karl; Richard W. Katz; Kenneth E. Kunkel; Dennis P. Lettenmaier; Gregory J. McCabe; Christopher J. Paciorek; Karen R. Ryberg; Siegfried D. Schubert; Viviane B. S. Silva; Brooke C. Stewart; Aldo V. Vecchia; Gabriele Villarini; Russell S. Vose; John E. Walsh; Michael F. Wehner; David M. Wolock; Klaus Wolter; Connie A. Woodhouse; Donald J. Wuebbles

Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability...


Journal of Hydrometeorology | 2007

Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data

Grzegorz J. Ciach; Witold F. Krajewski; Gabriele Villarini

Abstract Although it is broadly acknowledged that the radar-rainfall (RR) estimates based on the U.S. national network of Weather Surveillance Radar-1988 Doppler (WSR-88D) stations contain a high degree of uncertainty, no methods currently exist to inform users about its quantitative characteristics. The most comprehensive characterization of this uncertainty can be achieved by delivering the products in a probabilistic rather than the traditional deterministic form. The authors are developing a methodology for probabilistic quantitative precipitation estimation (PQPE) based on weather radar data. In this study, they present the central element of this methodology: an empirically based error structure model for the RR products. The authors apply a product-error-driven (PED) approach to obtain a realistic uncertainty model. It is based on the analyses of six years of data from the Oklahoma City, Oklahoma, WSR-88D radar (KTLX) processed with the Precipitation Processing System algorithm of the NEXRAD system...


Journal of Climate | 2013

Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios

Thomas R. Knutson; Joseph J. Sirutis; Gabriel A. Vecchi; Stephen T. Garner; Ming Zhao; Hyeong-Seog Kim; Morris A. Bender; Robert E. Tuleya; Isaac M. Held; Gabriele Villarini

AbstractTwenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model Intercomparison Project (CMIP3)/Special Report on Emissions Scenarios A1B (SRES A1B; late-twenty-first century) and phase 5 of the Coupled Model Intercomparison Project (CMIP5)/representative concentration pathway 4.5 (RCP4.5; early- and late-twenty-first century) scenarios are examined. Ten individual CMIP3 models are downscaled to assess the spread of results among the CMIP3 (but not the CMIP5) models. Downscaling simulations are compared for 18-km grid regional and 50-km grid global models. Storm cases from the regional model are further downscaled into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model (9-km inner grid spacing, with ocean coupling) to simulate intense hurricanes at a finer resolution.A significant reduction in tropical storm frequency is projected for the CMIP3 ...


Journal of Climate | 2014

On the Seasonal Forecasting of Regional Tropical Cyclone Activity

Gabriel A. Vecchi; Thomas L. Delworth; Richard Gudgel; Sarah B. Kapnick; Anthony Rosati; Andrew T. Wittenberg; Fanrong Zeng; Whit G. Anderson; V. Balaji; Keith W. Dixon; Liwei Jia; H.-S. Kim; Lakshmi Krishnamurthy; Rym Msadek; William F. Stern; Seth Underwood; Gabriele Villarini; Xiasong Yang; Shaoqing Zhang

AbstractTropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic o...


Environmental Research Letters | 2013

Future changes in atmospheric rivers and their implications for winter flooding in Britain

David A. Lavers; Richard P. Allan; Gabriele Villarini; Benjamin Lloyd-Hughes; David Brayshaw; Andrew J. Wade

Within the warm conveyor belt of extra-tropical cyclones, atmospheric rivers (ARs) are the key synoptic features which deliver the majority of poleward water vapour transport, and are associated with episodes of heavy and prolonged rainfall. ARs are responsible for many of the largest winter floods in the mid-latitudes resulting in major socioeconomic losses; for example, the loss from United Kingdom (UK) flooding in summer/winter 2012 is estimated to be about


Journal of Climate | 2013

Changing Frequency of Heavy Rainfall over the Central United States

Gabriele Villarini; James A. Smith; Gabriel A. Vecchi

1.6 billion in damages. Given the well-established link between ARs and peak river flows for the present day, assessing how ARs could respond under future climate projections is of importance in gauging future impacts from flooding. We show that North Atlantic ARs are projected to become stronger and more numerous in the future scenarios of multiple simulations from five state-of-the-art global climate models (GCMs) in the fifth Climate Model Intercomparison Project (CMIP5). The increased water vapour transport in projected ARs implies a greater risk of higher rainfall totals and therefore larger winter floods in Britain, with increased AR frequency leading to more flood episodes. In the high emissions scenario (RCP8.5) for 2074‐2099 there is an approximate doubling of AR frequency in the five GCMs. Our results suggest that the projected change in ARs is predominantly a thermodynamic response to warming resulting from anthropogenic radiative forcing.


Monthly Weather Review | 2011

Statistical–Dynamical Predictions of Seasonal North Atlantic Hurricane Activity

Gabriel A. Vecchi; Ming Zhao; Hui Wang; Gabriele Villarini; Anthony Rosati; Arun Kumar; Isaac M. Held; Richard Gudgel

AbstractRecords of daily rainfall accumulations from 447 rain gauge stations over the central United States (Minnesota, Wisconsin, Michigan, Iowa, Illinois, Indiana, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, Alabama, and Mississippi) are used to assess past changes in the frequency of heavy rainfall. Each station has a record of at least 50 yr, and the data cover most of the twentieth century and the first decade of the twenty-first century. Analyses are performed using a peaks-over-threshold approach, and, for each station, the 95th percentile is used as the threshold. Because of the count nature of the data and to account for both abrupt and slowly varying changes in the heavy rainfall distribution, a segmented regression is used to detect changepoints at unknown points in time. The presence of trends is assessed by means of a Poisson regression model to examine whether the rate of occurrence parameter is a linear function of time (by means of a logarithmic link function). The results point to...


Monthly Weather Review | 2010

Modeling the Dependence of Tropical Storm Counts in the North Atlantic Basin on Climate Indices

Gabriele Villarini; Gabriel A. Vecchi; James A. Smith

Skillfullypredicting North Atlantichurricane activitymonths in advance is of potential societal significance and a useful test of our understanding of the factors controlling hurricane activity. In this paper, a statistical‐ dynamical hurricane forecasting system, based on a statistical hurricane model, with explicit uncertainty estimates,andbuiltfromasuiteofhigh-resolutionglobalatmosphericdynamicalmodelintegrationsspanning a broad range of climate states is described. The statistical model uses two climate predictors: the sea surface temperature (SST) in the tropical North Atlantic and SST averaged over the global tropics. The choice of predictorsis motivatedby physicalconsiderations, aswell astheresultsofhigh-resolutionhurricanemodeling and statistical modeling of the observed record. The statistical hurricane model is applied to a suite of initialized dynamical global climate model forecasts of SST to predict North Atlantic hurricane frequency, which peaks during the August‐October season, from different starting dates. Retrospective forecasts of the 1982‐2009 period indicate that skillful predictions can be made from as early as November of the previous year; that is, skillful forecasts for the coming North Atlantic hurricane season could be made as the current one is closing. Based on forecasts initialized between November 2009 and March 2010, the model system predictsthattheupcoming2010NorthAtlantichurricaneseasonwilllikelybemoreactivethanthe1982‐2009 climatology, with the forecasts initialized in March 2010 predicting an expected hurricane count of eight and a 50% probability of counts between six (the 1966‐2009 median) and nine.


Journal of Climate | 2013

Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models

Gabriele Villarini; Gabriel A. Vecchi

Abstract The authors analyze and model time series of annual counts of tropical storms lasting more than 2 days in the North Atlantic basin and U.S. landfalling tropical storms over the period 1878–2008 in relation to different climate indices. The climate indices considered are the tropical Atlantic sea surface temperature (SST), tropical mean SST, the North Atlantic Oscillation (NAO), and the Southern Oscillation index (SOI). Given the uncertainties associated with a possible tropical storm undercount in the presatellite era, two different time series of counts for the North Atlantic basin are employed: one is the original (uncorrected) tropical storm record maintained by the National Hurricane Center and the other one is with a correction for the estimated undercount associated with a changing observation network. Two different SST time series are considered: the Met Office’s HadISSTv1 and NOAA’s Extended Reconstructed SST. Given the nature of the data (counts), a Poisson regression model is adopted. T...


Journal of Climate | 2015

Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios

Thomas R. Knutson; Joseph J. Sirutis; Ming Zhao; Robert E. Tuleya; Morris A. Bender; Gabriel A. Vecchi; Gabriele Villarini; Daniel R. Chavas

AbstractTropical cyclones—particularly intense ones—are a hazard to life and property, so an assessment of the changes in North Atlantic tropical cyclone intensity has important socioeconomic implications. In this study, the authors focus on the seasonally integrated power dissipation index (PDI) as a metric to project changes in tropical cyclone intensity. Based on a recently developed statistical model, this study examines projections in North Atlantic PDI using output from 17 state-of-the-art global climate models and three radiative forcing scenarios. Overall, the authors find that North Atlantic PDI is projected to increase with respect to the 1986–2005 period across all scenarios. The difference between the PDI projections and those of the number of North Atlantic tropical cyclones, which are not projected to increase significantly, indicates an intensification of North Atlantic tropical cyclones in response to both greenhouse gas (GHG) increases and aerosol changes over the current century. At the ...

Collaboration


Dive into the Gabriele Villarini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge