Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gail Ackermann is active.

Publication


Featured researches published by Gail Ackermann.


Methods in Enzymology | 2013

Advancing Our Understanding of the Human Microbiome Using QIIME

Jose A. Navas-Molina; Juan Manuel Peralta-Sánchez; Antonio Gonzalez; Paul J. McMurdie; Yoshiki Vázquez-Baeza; Zhenjiang Xu; Luke K. Ursell; Christian L. Lauber; Hong-Wei Zhou; Se Jin Song; James Huntley; Gail Ackermann; Donna Berg-Lyons; Susan Holmes; J. Gregory Caporaso; Rob Knight

High-throughput DNA sequencing technologies, coupled with advanced bioinformatics tools, have enabled rapid advances in microbial ecology and our understanding of the human microbiome. QIIME (Quantitative Insights Into Microbial Ecology) is an open-source bioinformatics software package designed for microbial community analysis based on DNA sequence data, which provides a single analysis framework for analysis of raw sequence data through publication-quality statistical analyses and interactive visualizations. In this chapter, we demonstrate the use of the QIIME pipeline to analyze microbial communities obtained from several sites on the bodies of transgenic and wild-type mice, as assessed using 16S rRNA gene sequences generated on the Illumina MiSeq platform. We present our recommended pipeline for performing microbial community analysis and provide guidelines for making critical choices in the process. We present examples of some of the types of analyses that are enabled by QIIME and discuss how other tools, such as phyloseq and R, can be applied to expand upon these analyses.


Genome Research | 2013

Meta-analyses of studies of the human microbiota

Catherine A. Lozupone; Jesse Stombaugh; Antonio Gonzalez; Gail Ackermann; Doug Wendel; Yoshiki Vázquez-Baeza; Janet K. Jansson; Jeffrey I. Gordon; Rob Knight

Our body habitat-associated microbial communities are of intense research interest because of their influence on human health. Because many studies of the microbiota are based on the same bacterial 16S ribosomal RNA (rRNA) gene target, they can, in principle, be compared to determine the relative importance of different disease/physiologic/developmental states. However, differences in experimental protocols used may produce variation that outweighs biological differences. By comparing 16S rRNA gene sequences generated from diverse studies of the human microbiota using the QIIME database, we found that variation in composition of the microbiota across different body sites was consistently larger than technical variability across studies. However, samples from different studies of the Western adult fecal microbiota generally clustered by study, and the 16S rRNA target region, DNA extraction technique, and sequencing platform produced systematic biases in observed diversity that could obscure biologically meaningful compositional differences. In contrast, systematic compositional differences in the fecal microbiota that occurred with age and between Western and more agrarian cultures were great enough to outweigh technical variation. Furthermore, individuals with ileal Crohns disease and in their third trimester of pregnancy often resembled infants from different studies more than controls from the same study, indicating parallel compositional attributes of these distinct developmental/physiological/disease states. Together, these results show that cross-study comparisons of human microbiota are valuable when the studied parameter has a large effect size, but studies of more subtle effects on the human microbiota require carefully selected control populations and standardized protocols.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Molecular cartography of the human skin surface in 3D

Amina Bouslimani; Carla Porto; Christopher M. Rath; Mingxun Wang; Yurong Guo; Antonio Gonzalez; Donna Berg-Lyon; Gail Ackermann; Gitte Julie Moeller Christensen; Teruaki Nakatsuji; Ling-juan Zhang; Andrew W. Borkowski; Michael J. Meehan; Kathleen Dorrestein; Richard L. Gallo; Nuno Bandeira; Rob Knight; Theodore Alexandrov; Pieter C. Dorrestein

Significance The paper describes the implementation of an approach to study the chemical makeup of human skin surface and correlate it to the microbes that live in the skin. We provide the translation of molecular information in high-spatial resolution 3D to understand the body distribution of skin molecules and bacteria. In addition, we use integrative analysis to interpret, at a molecular level, the large scale of data obtained from human skin samples. Correlations between molecules and microbes can be obtained to further gain insights into the chemical milieu in which these different microbial communities live. The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.


Cell Host & Microbe | 2015

Microbiota and Host Nutrition across Plant and Animal Kingdoms

Stéphane Hacquard; Ruben Garrido-Oter; Antonio González; Stijn Spaepen; Gail Ackermann; Sarah L. Lebeis; Alice C. McHardy; Jeffrey L. Dangl; Rob Knight; Ruth E. Ley; Paul Schulze-Lefert

Plants and animals each have evolved specialized organs dedicated to nutrient acquisition, and these harbor specific bacterial communities that extend the hosts metabolic repertoire. Similar forces driving microbial community establishment in the gut and plant roots include diet/soil-type, host genotype, and immune system as well as microbe-microbe interactions. Here we show that there is no overlap of abundant bacterial taxa between the microbiotas of the mammalian gut and plant roots, whereas taxa overlap does exist between fish gut and plant root communities. A comparison of root and gut microbiota composition in multiple host species belonging to the same evolutionary lineage reveals host phylogenetic signals in both eukaryotic kingdoms. The reasons underlying striking differences in microbiota composition in independently evolved, yet functionally related, organs in plants and animals remain unclear but might include differences in start inoculum and niche-specific factors such as oxygen levels, temperature, pH, and organic carbon availability.


eLife | 2013

A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

Jessica L. Metcalf; Laura Wegener Parfrey; Antonio Gonzalez; Christian L. Lauber; Dan Knights; Gail Ackermann; Gregory Humphrey; Matthew J. Gebert; Will Van Treuren; Donna Berg-Lyons; Kyle G. Keepers; Yan Guo; James Bullard; Noah Fierer; David O. Carter; Rob Knight

Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001


Science | 2016

Microbial community assembly and metabolic function during mammalian corpse decomposition

Jessica L. Metcalf; Zhenjiang Zech Xu; Sophie Weiss; Simon Lax; Will Van Treuren; Embriette R. Hyde; Se Jin Song; Amnon Amir; Peter E. Larsen; Naseer Sangwan; Daniel Haarmann; Greg Humphrey; Gail Ackermann; Luke R. Thompson; Christian L. Lauber; Alexander Bibat; Catherine Nicholas; Matthew J. Gebert; Joseph F. Petrosino; Sasha C. Reed; Jack A. Gilbert; Aaron M. Lynne; Sibyl R. Bucheli; David O. Carter; Rob Knight

Decomposition spawns a microbial zoo The death of a large animal represents a food bonanza for microorganisms. Metcalf et al. monitored microbial activity during the decomposition of mouse and human cadavers. Regardless of soil type, season, or species, the microbial succession during decomposition was a predictable measure of time since death. An overlying corpse leaches nutrients that allow soil- and insect-associated fungi and bacteria to grow. These microorganisms are metabolic specialists that convert proteins and lipids into foul-smelling compounds such as cadaverine, putrescine, and ammonia, whose signature may persist in the soil long after a corpse has been removed. Science, this issue p. 158 As a corpse rots, the microbial succession follows a similar pattern across different types of soil. Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.


Nature Communications | 2016

Diversity, structure and convergent evolution of the global sponge microbiome

Torsten Thomas; Lucas Moitinho-Silva; Miguel Lurgi; Johannes R. Björk; Cole Easson; Carmen Astudillo-García; Julie B. Olson; Patrick M. Erwin; Susanna López-Legentil; Heidi M. Luter; Andia Chaves-Fonnegra; Rodrigo Costa; Peter J. Schupp; Laura Steindler; Dirk Erpenbeck; Jack A. Gilbert; Rob Knight; Gail Ackermann; Jose V. Lopez; Michael W. Taylor; Robert W. Thacker; José M. Montoya; Ute Hentschel; Nicole S. Webster

Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the worlds oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.


mSystems | 2016

Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys

William H. Walters; Embriette R. Hyde; Donna Berg-Lyons; Gail Ackermann; Greg Humphrey; Alma Parada; Jack A. Gilbert; Janet K. Jansson; J. Gregory Caporaso; Jed A. Fuhrman; Amy Apprill; Rob Knight

We continue to uncover a wealth of information connecting microbes in important ways to human and environmental ecology. As our scientific knowledge and technical abilities improve, the tools used for microbiome surveys can be modified to improve the accuracy of our techniques, ensuring that we can continue to identify groundbreaking connections between microbes and the ecosystems they populate, from ice caps to the human body. It is important to confirm that modifications to these tools do not cause new, detrimental biases that would inhibit the field rather than continue to move it forward. We therefore demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types, from soil to human skin. This confirms the utility of these primers for maintaining currently recommended microbiome research techniques as the state of the art. ABSTRACT Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of data sets amplified with varied primers requires attention. Here, we examined the performance of modified 16S rRNA gene and internal transcribed spacer (ITS) primers for archaea/bacteria and fungi, respectively, with nonaquatic samples. We moved primer bar codes to the 5′ end, allowing for a range of different 3′ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4 and 5 of the 16S rRNA gene. We additionally demonstrated that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and clade SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies. IMPORTANCE We continue to uncover a wealth of information connecting microbes in important ways to human and environmental ecology. As our scientific knowledge and technical abilities improve, the tools used for microbiome surveys can be modified to improve the accuracy of our techniques, ensuring that we can continue to identify groundbreaking connections between microbes and the ecosystems they populate, from ice caps to the human body. It is important to confirm that modifications to these tools do not cause new, detrimental biases that would inhibit the field rather than continue to move it forward. We therefore demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types, from soil to human skin. This confirms the utility of these primers for maintaining currently recommended microbiome research techniques as the state of the art.


PLOS ONE | 2014

HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats

Phoebe Lin; Mary Bach; Mark Asquith; Aaron Y. Lee; Lakshmi Akileswaran; Patrick Stauffer; Sean Davin; Yuzhen Pan; Eric D. Cambronne; Martha L. Dorris; Justine W. Debelius; Christian L. Lauber; Gail Ackermann; Yoshiki Vazquez Baeza; Tejpal Gill; Rob Knight; Robert A. Colbert; Joel D. Taurog; Russell N. Van Gelder; James T. Rosenbaum

The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.


mSphere | 2016

Extreme Dysbiosis of the Microbiome in Critical Illness

Daniel McDonald; Gail Ackermann; Ludmila Khailova; Christine Baird; Daren K. Heyland; Rosemary Kozar; Margot Lemieux; Karrie Derenski; Judy King; Christine Vis-Kampen; Rob Knight; Paul E. Wischmeyer

Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. ABSTRACT Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast: A podcast concerning this article is available.

Collaboration


Dive into the Gail Ackermann's collaboration.

Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian L. Lauber

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Humphrey

University of California

View shared research outputs
Top Co-Authors

Avatar

Mingxun Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Se Jin Song

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge