Wilbert Cruz
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wilbert Cruz.
International Journal of Radiation Oncology Biology Physics | 2014
P Mavroidis; Natasa Milickovic; Wilbert Cruz; Nikolaos Tselis; Andreas Karabis; Sotirios Stathakis; Nikos Papanikolaou; Nikolaos Zamboglou; Dimos Baltas
PURPOSE The aim of the present study was the investigation of different fractionation schemes to estimate their clinical impact. For this purpose, widely applied radiobiological models and dosimetric measures were used to associate their results with clinical findings. METHODS AND MATERIALS The dose distributions of 12 clinical high-dose-rate brachytherapy implants for prostate were evaluated in relation to different fractionation schemes. The fractionation schemes compared were: (1) 1 fraction of 20 Gy; (2) 2 fractions of 14 Gy; (3) 3 fractions of 11 Gy; and (4) 4 fractions of 9.5 Gy. The clinical effectiveness of the different fractionation schemes was estimated through the complication-free tumor control probability (P+), the biologically effective uniform dose, and the generalized equivalent uniform dose index. RESULTS For the different fractionation schemes, the tumor control probabilities were 98.5% in 1×20 Gy, 98.6% in 2×14 Gy, 97.5% in 3×11 Gy, and 97.8% in 4×9.5 Gy. The corresponding P+ values were 88.8% in 1×20 Gy, 83.9% in 2×14 Gy, 86.0% in 3×11 Gy, and 82.3% in 4×9.5 Gy. With use of the fractionation scheme 4×9.5 Gy as reference, the isoeffective schemes regarding tumor control for 1, 2, and 3 fractions were 1×19.68 Gy, 2×13.75 Gy, and 3×11.05 Gy. The optimum fractionation schemes for 1, 2, 3, and 4 fractions were 1×19.16 Gy with a P+ of 91.8%, 2×13.2 Gy with a P+ of 89.6%, 3×10.6 Gy with a P+ of 88.4%, and 4×9.02 Gy with a P+ of 86.9%. CONCLUSIONS Among the fractionation schemes 1×20 Gy, 2×14 Gy, 3×11 Gy, and 4×9.5 Gy, the first scheme was more effective in terms of P+. After performance of a radiobiological optimization, it was shown that a single fraction of 19.2 to 19.7 Gy (average 19.5 Gy) should produce at least the same benefit as that given by the 4×9.5 Gy scheme, and it should reduce the expected total complication probability by approximately 40% to 55%.
Journal of Applied Clinical Medical Physics | 2016
Ganesh Narayanasamy; D Saenz; Wilbert Cruz; Chul S. Ha; N Papanikolaou; Sotirios Stathakis
The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high‐dose‐rate flattening filter‐free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9 MeV, 12 MeV, 15 MeV) and 160‐leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in‐plane and cross‐plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross‐plane penumbra values were higher than the in‐plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety. PACS number(s): 87.56.bdThe purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high-dose-rate flattening filter-free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9 MeV, 12 MeV, 15 MeV) and 160-leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in-plane and cross-plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross-plane penumbra values were higher than the in-plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety. PACS number(s): 87.56.bd.
Journal of Applied Clinical Medical Physics | 2016
D Saenz; Ganesh Narayanasamy; Wilbert Cruz; Nikos Papanikolaou; Sotirios Stathakis
The Elekta Versa HD incorporates a variety of upgrades to the line of Elekta linear accelerators, primarily including the Agility head and flattening filter-free (FFF) photon beam delivery. The completely distinct dosimetric output of the head from its predecessors, combined with the FFF beams, requires a new investigation of modeling in treatment planning systems. A model was created in Pinnacle3 v9.8 with the commissioned beam data. A phantom consisting of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3 , where beams of different field sizes, source-to-surface distances (SSDs), wedges, and gantry angles were devised. Beams included all of the available photon energies (6, 10, 18, 6 FFF, and 10 FFF MV), as well as the four electron energies commissioned for clinical use (6, 9, 12, and 15 MeV). The plans were verified at calculation points by measurement with a calibrated ionization chamber. Homogeneous and heterogeneous point-dose measurements agreed within 2% relative to maximum dose for all photon and electron beams. AP photon open field measurements along the central axis at 100 cm SSD passed within 1%. In addition, IMRT testing was also performed with three standard plans (step and shoot IMRT, as well as a small- and large-field VMAT plan). The IMRT plans were delivered on the Delta4 IMRT QA phantom, for which a gamma passing rate was >99.5% for all plans with a 3% dose deviation, 3 mm distance-to-agreement, and 10% dose threshold. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4%±2.3%. Such testing ensures confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head. PACS numbers: 87.55.D, 87.56.bd.The Elekta Versa HD incorporates a variety of upgrades to the line of Elekta linear accelerators, primarily including the Agility head and flattening filter‐free (FFF) photon beam delivery. The completely distinct dosimetric output of the head from its predecessors, combined with the FFF beams, requires a new investigation of modeling in treatment planning systems. A model was created in Pinnacle3 v9.8 with the commissioned beam data. A phantom consisting of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3, where beams of different field sizes, source‐to‐surface distances (SSDs), wedges, and gantry angles were devised. Beams included all of the available photon energies (6, 10, 18, 6 FFF, and 10 FFF MV), as well as the four electron energies commissioned for clinical use (6, 9, 12, and 15 MeV). The plans were verified at calculation points by measurement with a calibrated ionization chamber. Homogeneous and heterogeneous point‐dose measurements agreed within 2% relative to maximum dose for all photon and electron beams. AP photon open field measurements along the central axis at 100 cm SSD passed within 1%. In addition, IMRT testing was also performed with three standard plans (step and shoot IMRT, as well as a small‐ and large‐field VMAT plan). The IMRT plans were delivered on the Delta4 IMRT QA phantom, for which a gamma passing rate was >99.5% for all plans with a 3% dose deviation, 3 mm distance‐to‐agreement, and 10% dose threshold. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4%±2.3%. Such testing ensures confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head. PACS numbers: 87.55.D, 87.56.bd
Journal of Applied Clinical Medical Physics | 2016
Ganesh Narayanasamy; Wilbert Cruz; D Saenz; Sotirios Stathakis; N Papanikolaou; Neil Kirby
Our institution performs in vivo verification measurement for each of our total body irradiation (TBI) patients with optically stimulated luminescent dosimeters (OSLD). The lung block verification measurements were commonly higher than expected. The aim of this work is to understand this discrepancy and improve the accuracy of these lung block verification measurements. Initially, the thickness of the lung block was increased to provide adequate lung sparing. Further tests revealed the increase was due to electron contamination dose emanating from the lung block. The thickness of the bolus material covering the OSLD behind the lung block was increased to offset the electron contamination. In addition, the distance from the lung block to the dosimeter was evaluated for its effect on the OSLD reading and found to be clinically insignificant over the range of variability in our clinic. The results show that the improved TBI treatment technique provides for better accuracy of measured dose in vivo and consistency of patient setup. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.N‐, 87.55.QrOur institution performs in vivo verification measurement for each of our total body irradiation (TBI) patients with optically stimulated luminescent dosimeters (OSLD). The lung block verification measurements were commonly higher than expected. The aim of this work is to understand this discrepancy and improve the accuracy of these lung block verification measurements. Initially, the thickness of the lung block was increased to provide adequate lung sparing. Further tests revealed the increase was due to electron contamination dose emanating from the lung block. The thickness of the bolus material covering the OSLD behind the lung block was increased to offset the electron contamination. In addition, the distance from the lung block to the dosimeter was evaluated for its effect on the OSLD reading and found to be clinically insignificant over the range of variability in our clinic. The results show that the improved TBI treatment technique provides for better accuracy of measured dose in vivo and consistency of patient setup. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.N-, 87.55.Qr.
Medical Physics | 2015
Ganesh Narayanasamy; D Saenz; Wilbert Cruz; P Mavroidis; N Papanikolaou; S Stathakis
Purpose: The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta VersaHD linear accelerator with high dose rate flattening-filter-free (FFF) photon modes and electron modes. Methods: Acceptance and commissioning was performed on an Elekta VersaHD linac with 5 photon energies (6MV, 10MV, 18MV, 6FFF, 10FFF), 4 electron energies (6MeV, 9MeV, 12MeV, 15MeV) and 160 leaf (5mm wide) multi-leaf collimators (MLCs). Mechanical and dosimetric data was measured and evaluated. The measurements include percent depth doses (PDDs), inplane and crossplane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Results: Gantry, collimator, couch isocentricity measurements were within 1mm, 0.7mm and 0.7mm diameter respectively. The PDDs of 6FFF and 10FFF beams show deeper dmax and steeper fall-off with depth than the corresponding flattened beams. While flatness values of 6FFF and 10FFF normalized profiles were higher than the corresponding flattened beams, the symmetry values were almost identical. The crossplane penumbra values were higher than the inplane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6% and 0.6% for 6MV, 10MV, and 18MV photon beams. The electron PDDs, profiles and cone factors is validated by literature. Conclusion: The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing VersaHD commissioning thus improving patient safety.
Medical Physics | 2015
Je Roring; D Saenz; Wilbert Cruz; N Papanikolaou; Sotirios Stathakis
Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC. Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware.
Medical Physics | 2015
D Saenz; Ganesh Narayanasamy; Wilbert Cruz; N Papanikolaou; S Stathakis
Purpose: The Versa HD incorporates a variety of upgrades, primarily including the Agility head. The distinct dosimetric properties of the head from its predecessors combined with flattening-filter-free (FFF) beams require a new investigation of modeling in planning systems and verification of modeling accuracy. Methods: A model was created in Pinnacle3 v9.8 with commissioned beam data. Leaf transmission was modeled as <0.5% with maximum leaf speed of 3 cm/s. Photon spectra were tuned for FFF beams, for which profiles were modeled with arbitrary profiles rather than with cones. For verification, a variety of plans with varied parameters were devised, and point dose measurements were compared to calculated values. A phantom of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3. Beams of different field sizes, SSD, wedges, and gantry angles were created. All available photon energies (6 MV, 10 MV, 18 MV, 6 FFF, 10 FFF) as well four clinical electron energies (6, 9, 12, and 15 MeV) were investigated. The plans were verified at a calculation point (8 cm deep for photons, variable for electrons) by measurement with a PTW Semiflex ionization chamber. In addition, IMRT testing was performed with three standard plans (step and shoot IMRT, small and large field VMAT plans). The plans were delivered on the Delta4 IMRT QA phantom (ScandiDos, Uppsala, Sweden). Results: Homogeneous point dose measurement agreed within 2% for all photon and electron beams. Open field photon measurements along the central axis at 100 cm SSD passed within 1%. Gamma passing rates were >99.5% for all plans with a 3%/3mm tolerance criteria. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4±2.3%. Conclusion: The end-to-end testing ensured confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head.
Medical Physics | 2014
Ganesh Narayanasamy; Wilbert Cruz; C Breton; A Gutierrez; Panayiotis Mavroidis; N Papanikolaou; Sotirios Stathakis
PURPOSE To examine the accuracy of measured tissue phantom ratios (TPR) values with TPR calculated from percentage depth dose (PDD) with and without peak scatter fraction (PSF) correction. METHODS For 6MV open beam, TPR and PDD values were measured using PTW Semiflex (31010) ionization field and reference chambers (0.125cc volume) in a PTW MP3-M water tank. PDD curves were measured at SSD of 100cm for 7 square fields from 3cm to 30cm. The TPR values were measured up to 22cm depth for the same fields by continuous water draining method with ionization chamber static at 100cm from source. A comparison study was performed between the (a) measured TPR, (b) TPR calculated from PDD without PSF, (c) TPR calculated from PDD with PSF and (d) clinical TPR from RadCalc (ver 6.2, Sun Nuclear Corp). RESULTS There is a field size, depth dependence on TPR values. For 10cmx10cm, the differences in surface dose (DDs), dose at 10cm depth (DD10) <0.5%; differences in dmax (Ddmax) <2mm for the 4 methods. The corresponding values for 30cmx30cm are DDs, DD10 <0.2% and Ddmax<3mm. Even though for 3cmx3cm field, DDs and DD10 <1% and Ddmax<1mm, the calculated TPR values with and without PSF correction differed by 2% at >20cm depth. In all field sizes at depths>28cm, (d) clinical TPR values are larger than that from (b) and (c) by >3%. CONCLUSION Measured TPR in method (a) differ from calculated TPR in methods (b) and (c) to within 1% for depths < 28cm in all 7 fields in open 6MV beam. The dmax values are within 3mm of each other. The largest deviation of >3% was observed in clinical TPR values in method (d) for all fields at depths < 28cm.
Medical Physics | 2013
Wilbert Cruz; S Stathakis; Panayiotis Mavroidis; C Esquivel; N Papanikolaou
Purpose: This study was conducted to review the IMRT QA results of patient plans (grouped by anatomical site, MLC type, and TPS) delivered at the Cancer Therapy and Research Center using Varian LINACs and Hi Art Tomotherapy units. Methods: The patient data was evaluated for the time period 2006–2011 and it involved several methods used in the QA process. Ion chambers and film were used in the earlier years followed by ion chamber arrays in the latter years. The patients were grouped according to several parameters including site of treatment, type of machine, and magnitude of the differences between measured and planned data. From 2006 until 2009, 736 tomotherapy plans, 817 Pinnacle3 plans, and 351 Corvus plans were evaluated using ion chambers and film. The pass criterion at the institution at the time of these measurements was 3% dose difference and 3mm distance agreement. For the period 2009–2011, 1466 patient IMRT QAs were performed on Varian linacs, which were equipped with Millennium 80, 120 and High‐Definition 120 multileaf collimators and they were evaluated according to pass criteria of the institution (gamma = 90%). Results: The average gamma values of the brain, head and neck, thorax, abdomen, and pelvis cancer cases were 97.2%, 95.7%, 96.2%, 97.0%, and 96.2%, respectively. The average gamma values based on the 80, 120, HD 120 and Tomo MLC configurations were 96.5%, 96.2%, 96.3%, and 97.0%, respectively. The average differences between the measured and calculated plans for the Pinnacle3, Hi‐ART TomoTherapy, and Corvus treatment planning systems were 2.3%, 0.004%, and 0.02%, respectively. Conclusion: Based on the anatomical site, head and neck cancers had the lowest gamma value for the patients treated and the brain cancers had the highest gamma value. The TomoTherapy machines had the best overall gamma values as compared to the CLINAC machines.
Medical Physics | 2013
Wilbert Cruz; Panayiotis Mavroidis; Natasa Milickovic; A Karabis; S Stathakis; N Papanikolaou; N Zamboglou; Dimos Baltas
PURPOSE The aim of the present study is to evaluate the robustness of the effectiveness of different fractionation schemes of HDR brachytherapy (to be applied as monotherapy for low-risk prostate cancer) by using radiobiological models and dosimetric measures. METHODS In this study, the treatment plans of 12 patients who had undergone clinical implants for HDR brachytherapy of prostate cancer were evaluated using the response probabilities of the individual organs, the complication-free tumor control probability (P+ ), the total tumor control probability (PB), the total normal tissue complication probability (PI), the biologically effective uniform dose (BEUD) and the generalized equivalent uniform dose (gEUD) as measures. These indices use the D50, γ, s, α/β and alpha radiobiological parameters together with the corresponding tissue DVH data. The values of those parameters were varied around their reference values in order to examine the impact of their uncertainty on the values of the radiobiological measures in the evaluation of four fractionation schemes. RESULTS For the four examined fractionation schemes, the tumor control probabilities are 98.5% in 1×20Gy, 98.6% in 2×14Gy, 97.5% in 3×11Gy and 97.8% in 4x9.5Gy. The corresponding total normal tissue complication probabilities are 9.7% in 1×20Gy, 14.6% in 2×14Gy, 11.5% in 3×11Gy and 15.6% in 4×9.5Gy. The complication-free tumor control probabilities are 88.8% in 1x20Gy, 83.9% in 2×14Gy, 86.0% in 3×11Gy and 82.3% in 4×9.5Gy. The sensitivity analysis showed that the values of P+, PB, PI and BEUD varied by 6.1-7.3%, 5.8-9.3%, 5.6-7.2% and 7.6-9.0 Gy, respectively. CONCLUSION The present analysis indicates that among the fractionation schemes of 1×20Gy, 2×14Gy, 3×11Gy and 4×9.5Gy the first scheme is more effective. The sensitivity analysis shows that the variation of the radiobiological parameters considerably affects the values of the response indices, especially the α/β parameter.
Collaboration
Dive into the Wilbert Cruz's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs