Gary D. Clark
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary D. Clark.
Nature Genetics | 1998
Shinji Hirotsune; Mark W. Fleck; Michael J. Gambello; Gregory J. Bix; Amy Chen; Gary D. Clark; David H. Ledbetter; Chris J. McBain; Anthony Wynshaw-Boris
Heterozygous mutation or deletion of the ß subunit of platelet-activating factor acetylhydrolase (PAFAH1B1, also known as LIS1) in humans is associated with type I lissencephaly, a severe developmental brain disorder thought to result from abnormal neuronal migration. To further understand the function of PAFAH1B1, we produced three different mutant alleles in mouse Pafah1b1. Homozygous null mice die early in embryogenesis soon after implantation. Mice with one inactive allele display cortical, hippocampal and olfactory bulb disorganization resulting from delayed neuronal migration by a cell-autonomous neuronal pathway. Mice with further reduction of Pafah1b1 activity display more severe brain disorganization as well as cerebellar defects. Our results demonstrate an essential, dosage-sensitive neuronal-specific role for Pafah1b1 in neuronal migration throughout the brain, and an essential role in early embryonic development. The phenotypes observed are distinct from those of other mouse mutants with neuronal migration defects, suggesting that Pafah1b1 participates in a novel pathway for neuronal migration.
Journal of Medical Genetics | 2010
Marwan Shinawi; Pengfei Liu; Sung Hae L Kang; Joseph Shen; John W. Belmont; Daryl A. Scott; Frank J. Probst; William J. Craigen; Brett H. Graham; Amber Pursley; Gary D. Clark; Jennifer A. Lee; Monica Proud; Amber Stocco; Diana L. Rodriguez; Beth A. Kozel; Steven Sparagana; Elizabeth Roeder; Susan G. McGrew; Thaddeus W. Kurczynski; Leslie J. Allison; Stephen Amato; Sarah Savage; Ankita Patel; Pawel Stankiewicz; Arthur L. Beaudet; Sau Wai Cheung; James R. Lupski
Background Deletion and the reciprocal duplication in 16p11.2 were recently associated with autism and developmental delay. Method We indentified 27 deletions and 18 duplications of 16p11.2 were identified in 0.6% of all samples submitted for clinical array-CGH (comparative genomic hybridisation) analysis. Detailed molecular and phenotypic characterisations were performed on 17 deletion subjects and ten subjects with the duplication. Results The most common clinical manifestations in 17 deletion and 10 duplication subjects were speech/language delay and cognitive impairment. Other phenotypes in the deletion patients included motor delay (50%), seizures (∼40%), behavioural problems (∼40%), congenital anomalies (∼30%), and autism (∼20%). The phenotypes among duplication patients included motor delay (6/10), behavioural problems (especially attention deficit hyperactivity disorder (ADHD)) (6/10), congenital anomalies (5/10), and seizures (3/10). Patients with the 16p11.2 deletion had statistically significant macrocephaly (p<0.0017) and 6 of the 10 patients with the duplication had microcephaly. One subject with the deletion was asymptomatic and another with the duplication had a normal cognitive and behavioural phenotype. Genomic analyses revealed additional complexity to the 16p11.2 region with mechanistic implications. The chromosomal rearrangement was de novo in all but 2 of the 10 deletion cases in which parental studies were available. Additionally, 2 de novo cases were apparently mosaic for the deletion in the analysed blood sample. Three de novo and 2 inherited cases were observed in the 5 of 10 duplication patients where data were available. Conclusions Recurrent reciprocal 16p11.2 deletion and duplication are characterised by a spectrum of primarily neurocognitive phenotypes that are subject to incomplete penetrance and variable expressivity. The autism and macrocephaly observed with deletion and ADHD and microcephaly seen in duplication patients support a diametric model of autism spectrum and psychotic spectrum behavioural phenotypes in genomic sister disorders.
Nature Genetics | 2003
Amir H. Assadi; Guangcheng Zhang; Uwe Beffert; Robert S. McNeil; Amy Renfro; Sanyong Niu; Carlo C. Quattrocchi; Barbara Antalffy; Michael Sheldon; Dawna D. Armstrong; Anthony Wynshaw-Boris; Joachim Herz; Gabriella D'Arcangelo; Gary D. Clark
Loss-of-function mutations in RELN (encoding reelin) or PAFAH1B1 (encoding LIS1) cause lissencephaly, a human neuronal migration disorder. In the mouse, homozygous mutations in Reln result in the reeler phenotype, characterized by ataxia and disrupted cortical layers. Pafah1b1+/− mice have hippocampal layering defects, whereas homozygous mutants are embryonic lethal. Reln encodes an extracellular protein that regulates layer formation by interacting with VLDLR and ApoER2 (Lrp8) receptors, thereby phosphorylating the Dab1 signaling molecule. Lis1 associates with microtubules and modulates neuronal migration. We investigated interactions between the reelin signaling pathway and Lis1 in brain development. Compound mutant mice with disruptions in the Reln pathway and heterozygous Pafah1b1 mutations had a higher incidence of hydrocephalus and enhanced cortical and hippocampal layering defects. Dab1 and Lis1 bound in a reelin-induced phosphorylation-dependent manner. These data indicate genetic and biochemical interaction between the reelin signaling pathway and Lis1.
Genetics in Medicine | 2007
Jonathan S. Berg; Nicola Brunetti-Pierri; Sarika U. Peters; Sung Hae L Kang; Chin-To Fong; Jessica Salamone; Debra Freedenberg; Vickie Hannig; Lisa Albers Prock; David T. Miller; Peter Raffalli; David J. Harris; Robert P. Erickson; Christopher Cunniff; Gary D. Clark; Maria Blazo; Daniel A. Peiffer; Kevin L. Gunderson; Trilochan Sahoo; Ankita Patel; James R. Lupski; Arthur L. Beaudet; Sau Wai Cheung
Purpose: Williams-Beuren syndrome is among the most well-characterized microdeletion syndromes, caused by recurrent de novo microdeletions at 7q11.23 mediated by nonallelic homologous recombination between low copy repeats flanking this critical region. However, the clinical phenotype associated with reciprocal microduplication of this genomic region is less well described. We investigated the molecular, clinical, neurodevelopmental, and behavioral features of seven patients with dup(7)(q11.23), including two children who inherited the microduplication from one of their parents, to more fully characterize this emerging microduplication syndrome.Methods: Patients were identified by array-based comparative genomic hybridization. Clinical examinations were performed on seven affected probands, and detailed cognitive and behavioral evaluations were carried out on four of the affected probands.Results: Our findings confirm initial reports of speech delay seen in patients with dup(7)(q11.23) and further delineate and expand the phenotypic spectrum of this condition to include communication, social interactions, and repetitive interests that are often observed in individuals diagnosed with autism spectrum disorders.Conclusions: Array-based comparative genomic hybridization is a powerful means of detecting genomic imbalances and identifying molecular etiologies in the clinic setting, including genomic disorders such as Williams-Beuren syndrome and dup(7)(q11.23). We propose that dup(7)(q11.23) syndrome may be as frequent as Williams-Beuren syndrome and a previously unrecognized cause of language delay and behavioral abnormalities. Indeed, these individuals may first be referred for evaluation of autism, even if they do not ultimately meet diagnostic criteria for an autism spectrum disorder.
The Journal of Neuroscience | 2001
Jonathan P. Aumais; James R. Tunstead; Robert S. McNeil; Bruce T. Schaar; Susan K. McConnell; Sue-Hwa Lin; Gary D. Clark; Li-Yuan Yu-Lee
NUDC is a highly conserved protein important for nuclear migration and viability in Aspergillus nidulans. Mammalian NudC interacts with Lis1, a neuronal migration protein important during neocorticogenesis, suggesting a conserved mechanism of nuclear movement in A. nidulans and neuronal migration in the developing mammalian brain (S. M. Morris et al., 1998). To further investigate this possibility, we show for the first time that NudC, Lis1, and cytoplasmic dynein intermediate chain (CDIC) colocalize at the microtubule organizing center (MTOC) around the nucleus in a polarized manner facing the leading pole of cerebellar granule cells with a migratory morphology. In neurons with stationary morphology, NudC is distributed throughout the soma and colocalizes with CDIC and tubulin in neurites as well as at the MTOC. At the subcellular level, NudC, CDIC, and p150 dynactin colocalize to the interphase microtubule array and the MTOC in fibroblasts. The observed colocalization is confirmed biochemically by coimmunoprecipitation of NudC with CDIC and cytoplasmic dynein heavy chain (CDHC) from mouse brain extracts. Consistent with its expression in individual neurons, a high level of NudC is detected in regions of the embryonic neocortex undergoing extensive neurogenesis as well as neuronal migration. These data suggest a biochemical and functional interaction of NudC with Lis1 and the dynein motor complex during neuronal migration in vivo.
American Journal of Medical Genetics Part A | 2008
William B. Dobyns; Ghayda M. Mirzaa; Susan L. Christian; Kristin Petras; Jessica A. Roseberry; Gary D. Clark; Cynthia J. Curry; Donna M. McDonald-McGinn; Livija Medne; Elaine H. Zackai; Julie Parsons; Dina J. Zand; Fuki M. Hisama; Christopher A. Walsh; Richard J. Leventer; Christa Lese Martin; Marzena Gajecka; Lisa G. Shaffer
Polymicrogyria is a malformation of cortical development characterized by loss of the normal gyral pattern, which is replaced by many small and infolded gyri separated by shallow, partly fused sulci, and loss of middle cortical layers. The pathogenesis is unknown, yet emerging data supports the existence of several loci in the human genome. We report on the clinical and brain imaging features, and results of cytogenetic and molecular genetic studies in 29 patients with polymicrogyria associated with structural chromosome rearrangements. Our data map new polymicrogyria loci in chromosomes 1p36.3, 2p16.1–p23, 4q21.21–q22.1, 6q26–q27, and 21q21.3–q22.1, and possible loci in 1q44 and 18p as well. Most and possibly all of these loci demonstrate incomplete penetrance and variable expressivity. We anticipate that these data will serve as the basis for ongoing efforts to identify the causal genes located in these regions.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Wei Yan; Amir H. Assadi; Anthony Wynshaw-Boris; Gregor Eichele; Martin M. Matzuk; Gary D. Clark
Platelet-activating factor (PAF) has been shown to affect sperm motility and acrosomal function, thereby altering fertility. PAF acetylhydrolase 1b (PAFAH1B) hydrolyzes PAF and is composed of three subunits [the lissencephaly (LIS1) protein and α1 and α2 subunits] and structurally resembles a GTP-hydrolyzing protein. Besides the brain, transcripts for Lis1, α1, and α2 are localized to meiotic and early haploid germ cells. Here, we report disruptions of the α2 (Pafah1b2) and α1 (Pafah1b3) genes in mice. Male mice homozygous null for α2(α2-/-) are infertile, and spermatogenesis is disrupted at mid- or late pachytene stages of meiosis or early spermiogenesis. Whereas mice homozygous mutant for α1(α1-/-) have normal fertility and normal spermatogenesis, those with disruptions of both α1 and α2 (α1-/-α2-/-) manifest an earlier disturbance of spermatogenesis with an onset at preleptotene or leptotene stages of meiosis. Testicular Lis1 protein levels are up-regulated in the α2-/- and α1-/-α2-/- mice. Lowering Lis1 levels by inactivating one allele of Lis1 in α2 null or α1/α 2 null genetic backgrounds (i.e., α2-/-Lis1+/- or α1-/-α2-/-Lis1+/- mice) restored spermatogenesis and male fertility. Our data provide evidence for unique roles of the PAFAH1B complex and, particularly, the lissencephaly protein Lis1 in spermatogenesis.
PLOS ONE | 2007
Guangcheng Zhang; Amir H. Assadi; Robert S. McNeil; Uwe Beffert; Anthony Wynshaw-Boris; Joachim Herz; Gary D. Clark; Gabriella D'Arcangelo
Reelin is an extracellular protein that directs the organization of cortical structures of the brain through the activation of two receptors, the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2), and the phosphorylation of Disabled-1 (Dab1). Lis1, the product of the Pafah1b1 gene, is a component of the brain platelet-activating factor acetylhydrolase 1b (Pafah1b) complex, and binds to phosphorylated Dab1 in response to Reelin. Here we investigated the involvement of the whole Pafah1b complex in Reelin signaling and cortical layer formation and found that catalytic subunits of the Pafah1b complex, Pafah1b2 and Pafah1b3, specifically bind to the NPxYL sequence of VLDLR, but not to ApoER2. Compound Pafah1b1+/−;Apoer2−/− mutant mice exhibit a reeler-like phenotype in the forebrain consisting of the inversion of cortical layers and hippocampal disorganization, whereas double Pafah1b1+/−;Vldlr−/− mutants do not. These results suggest that a cross-talk between the Pafah1b complex and Reelin occurs downstream of the VLDLR receptor.
Journal of Neuropathology and Experimental Neurology | 1997
Gary D. Clark; Masashi Mizuguchi; Barbara Antalffy; James E. Barnes; Dawna L. Armstrong
Mutations that perturb neuronal migration provide important biological clues that can lead to an understanding of the role of specific cells and molecules in the formation of the cortex. The human neuronal migration disorder, Miller-Dicker lissencephaly, results from a hemideletion of LIS-1, which encodes a subunit of a brain platelet-activating factor acetylhydrolase. The cellular localization of the LIS-1 gene product in human fetal brain and its normal role in neuronal migration have yet to be determined. LIS-1 belongs to a family of genes that have identical coding sequences (LIS-1 [chromosome 17] and LIS-2 [chromosome 2]). In the brain, LIS-1 is the more abundant gene as determined by Northern blot analysis. Using antibodies raised against 2 epitopes of the LIS-1/LIS-2 protein sequence, we have localized the LIS family of gene products in the developing human brain to the Cajal-Retzius cells, some subplate neurons, thalamic neurons, the ventricular neuroepithelium, and at later gestational ages, to the ependyma. Therefore, LIS-1 bears some resemblance to reelin, the gene product involved in the cortical mouse mutant reeler, in that Cajal-Retzius cells demonstrate immunolocalization. However, unlike reelin, LIS proteins are expressed not only in the Cajal Retzius cells, but also in the ventricular neuroepithelium, suggesting a potential role for this structure in neuronal migration.
Mechanisms of Development | 2000
Kimberley J. Sweeney; Gary D. Clark; Alexander Prokscha; William B. Dobyns; Gregor Eichele
Human brain malformations, such as Miller-Dieker syndrome (MDS) or isolated lissencephaly sequence (ILS) may result from abnormal neuronal migration during brain development. MDS and ILS patients have a hemizygous deletion or mutation in the LIS1 gene (PAFAH1B1), therefore, the LIS1 encoded protein (Lis1) may play a role in neuronal migration. Lis1 is a subunit of a brain platelet-activating factor acetylhydrolase (PAFAH1B) where it forms a heterotrimeric complex with two hydrolase subunits, referred to as 29 kDa (PAFAH1B3) and 30 kDa (PAFAH1B2). In order to determine whether this heterotrimer is required for the developmental functions of PAFAH1B, we examined the binding properties of 29 and 30 kDa subunits to mutant Lis1 proteins. The results defined the critical regions of Lis1 for PAFAH1B complex formation and demonstrated that all human LIS1 mutations examined resulted in abolished or reduced capacity of Lis1 to interact with the 29 and 30 kDa subunits, suggesting that the PAFAH1B complex participates in the process of neuronal migration.