Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary K. Chen is active.

Publication


Featured researches published by Gary K. Chen.


Nature Genetics | 2012

Meta-analysis identifies common variants associated with body mass index in east Asians.

Wanqing Wen; Yoon Shin Cho; Wei Zheng; Rajkumar Dorajoo; Norihiro Kato; Lu Qi; Chien-Hsiun Chen; Ryan J. Delahanty; Yukinori Okada; Yasuharu Tabara; Dongfeng Gu; Dingliang Zhu; Christopher A. Haiman; Zengnan Mo; Yu-Tang Gao; Seang-Mei Saw; Min Jin Go; Fumihiko Takeuchi; Li-Ching Chang; Yoshihiro Kokubo; Jun Liang; Mei Hao; Loic Le Marchand; Yi Zhang; Yanling Hu; Tien Yin Wong; Jirong Long; Bok-Ghee Han; Michiaki Kubo; Ken Yamamoto

Multiple genetic loci associated with obesity or body mass index (BMI) have been identified through genome-wide association studies conducted predominantly in populations of European ancestry. We performed a meta-analysis of associations between BMI and approximately 2.4 million SNPs in 27,715 east Asians, which was followed by in silico and de novo replication studies in 37,691 and 17,642 additional east Asians, respectively. We identified ten BMI-associated loci at genome-wide significance (P < 5.0 × 10−8), including seven previously identified loci (FTO, SEC16B, MC4R, GIPR-QPCTL, ADCY3-DNAJC27, BDNF and MAP2K5) and three novel loci in or near the CDKAL1, PCSK1 and GP2 genes. Three additional loci nearly reached the genome-wide significance threshold, including two previously identified loci in the GNPDA2 and TFAP2B genes and a newly identified signal near PAX6, all of which were associated with BMI with P < 5.0 × 10−7. Findings from this study may shed light on new pathways involved in obesity and demonstrate the value of conducting genetic studies in non-European populations.


Genome Research | 2008

Fast and flexible simulation of DNA sequence data

Gary K. Chen; Paul Marjoram; Jeffrey D. Wall

Simulation of genomic sequences under the coalescent with recombination has conventionally been impractical for regions beyond tens of megabases. This work presents an algorithm, implemented as the program MaCS (Markovian Coalescent Simulator), that can efficiently simulate haplotypes under any arbitrary model of population history. We present several metrics comparing the performance of MaCS with other available simulation programs. Practical usage of MaCS is demonstrated through a comparison of measures of linkage disequilibrium between generated program output and real genotype data from populations considered to be structured.


Nature | 2011

The landscape of recombination in African Americans

Anjali G. Hinch; Arti Tandon; Nick Patterson; Yunli Song; Nadin Rohland; C. Palmer; Gary K. Chen; Kai Wang; Sarah G. Buxbaum; Ermeg L. Akylbekova; Melinda C. Aldrich; Christine B. Ambrosone; Christopher I. Amos; Elisa V. Bandera; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Cathryn H. Bock; Eric Boerwinkle; Qiuyin Cai; Neil E. Caporaso; Graham Casey; L. Adrienne Cupples; Sandra L. Deming; W. Ryan Diver; Jasmin Divers; Myriam Fornage; Elizabeth M. Gillanders; Joseph T. Glessner; Curtis C. Harris

Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.


Nature Genetics | 2011

Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21

Christopher A. Haiman; Gary K. Chen; William J. Blot; Sara S. Strom; Sonja I. Berndt; Rick A. Kittles; Benjamin A. Rybicki; William B. Isaacs; Sue A. Ingles; Janet L. Stanford; W. Ryan Diver; John S. Witte; Ann W. Hsing; Barbara Nemesure; Timothy R. Rebbeck; Kathleen A. Cooney; Jianfeng Xu; Adam S. Kibel; Jennifer J. Hu; Esther M. John; Serigne M. Gueye; Stephen Watya; Lisa B. Signorello; Richard B. Hayes; Zhaoming Wang; Edward D. Yeboah; Yao Tettey; Qiuyin Cai; Suzanne Kolb; Elaine A. Ostrander

In search of common risk alleles for prostate cancer that could contribute to high rates of the disease in men of African ancestry, we conducted a genome-wide association study, with 1,047,986 SNP markers examined in 3,425 African-Americans with prostate cancer (cases) and 3,290 African-American male controls. We followed up the most significant 17 new associations from stage 1 in 1,844 cases and 3,269 controls of African ancestry. We identified a new risk variant on chromosome 17q21 (rs7210100, odds ratio per allele = 1.51, P = 3.4 × 10−13). The frequency of the risk allele is ∼5% in men of African descent, whereas it is rare in other populations (<1%). Further studies are needed to investigate the biological contribution of this allele to prostate cancer risk. These findings emphasize the importance of conducting genome-wide association studies in diverse populations.


PLOS Genetics | 2011

Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium

Bogdan Pasaniuc; Noah Zaitlen; Guillaume Lettre; Gary K. Chen; Arti Tandon; W.H. Linda Kao; Ingo Ruczinski; Myriam Fornage; David S. Siscovick; Xiaofeng Zhu; Emma K. Larkin; Leslie A. Lange; L. Adrienne Cupples; Qiong Yang; Ermeg L. Akylbekova; Solomon K. Musani; Jasmin Divers; Joe Mychaleckyj; Mingyao Li; George J. Papanicolaou; Robert C. Millikan; Christine B. Ambrosone; Esther M. John; Leslie Bernstein; Wei Zheng; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles

While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.


Translational Psychiatry | 2012

Genome-wide meta-analyses of smoking behaviors in African Americans

Sean P. David; Ajna Hamidovic; Gary K. Chen; Andrew W. Bergen; J. Wessel; Jay Kasberger; Wm Brown; S. Petruzella; Evan L. Thacker; Young Jin Kim; Michael A. Nalls; Greg Tranah; Yun Ju Sung; Christine B. Ambrosone; Donna K. Arnett; Elisa V. Bandera; Diane M. Becker; Lewis C. Becker; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Ulrich Broeckel; Sarah G. Buxbaum; Neil E. Caporaso; Graham Casey; Stephen J. Chanock; Sandra L. Deming; W. R. Diver; Charles B. Eaton; Daniel S. Evans

The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n=32 389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (β=0.040, s.e.=0.007, P=1.84 × 10−8). This variant is present in the 5′-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.


PLOS Genetics | 2011

Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans

Christopher A. Haiman; Gary K. Chen; William J. Blot; Sara S. Strom; Sonja I. Berndt; Rick A. Kittles; Benjamin A. Rybicki; William B. Isaacs; Sue A. Ingles; Janet L. Stanford; W. Ryan Diver; John S. Witte; Stephen J. Chanock; Suzanne Kolb; Lisa B. Signorello; Yuko Yamamura; Christine Neslund-Dudas; Michael J. Thun; Adam B. Murphy; Graham Casey; Xin Sheng; Peggy Wan; Loreall Pooler; Kristine R. Monroe; Kevin M. Waters; Loic Le Marchand; Laurence N. Kolonel; Daniel O. Stram; Brian E. Henderson

GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls), we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05) with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10−4) that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17) over the alleles reported in the original GWAS (OR = 1.08). In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.


American Journal of Human Genetics | 2007

Enriching the analysis of genomewide association studies with hierarchical modeling.

Gary K. Chen; John S. Witte

Genomewide association studies (GWAs) initially investigate hundreds of thousands of single-nucleotide polymorphisms (SNPs), and the most promising SNPs are further evaluated with additional subjects, for replication or a joint analysis. Deciding which SNPs merit follow-up is one of the most crucial aspects of these studies. We present here an approach for selecting the most-promising SNPs that incorporates into a hierarchical model both conventional results and other existing information about the SNPs. The model is developed for general use, its potential value is shown by application, and tools are provided for undertaking hierarchical modeling. By quantitatively harnessing all available information in GWAs, hierarchical modeling may more clearly distinguish true causal variants from noise.


Nature Genetics | 2012

Common variants at 11q12, 10q26 and 3p11.2 are associated with prostate cancer susceptibility in Japanese

Shusuke Akamatsu; Ryo Takata; Christopher A. Haiman; Atsushi Takahashi; Takahiro Inoue; Michiaki Kubo; Mutsuo Furihata; Naoyuki Kamatani; Johji Inazawa; Gary K. Chen; Loic Le Marchand; Laurence N. Kolonel; Takahiko Katoh; Yuko Yamano; Minoru Yamakado; Hiroyuki Takahashi; Hiroki Yamada; Shin Egawa; Tomoaki Fujioka; Brian E. Henderson; Tomonori Habuchi; Osamu Ogawa; Yusuke Nakamura; Hidewaki Nakagawa

We have previously reported multiple loci associated with prostate cancer susceptibility in a Japanese population using a genome-wide association study (GWAS). To identify additional prostate cancer susceptibility loci, we genotyped nine SNPs that were nominally associated with prostate cancer (P < 1 × 10−4) in our previous GWAS in three independent studies of prostate cancer in Japanese men (2,557 individuals with prostate cancer (cases) and 3,003 controls). In a meta-analysis of our previous GWAS and the replication studies, which included a total of 7,141 prostate cancer cases and 11,804 controls from a single ancestry group, three new loci reached genome-wide significance on chromosomes 11q12 (rs1938781; P = 1.10 × 10−10; FAM111A-FAM111B), 10q26 (rs2252004; P = 1.98 × 10−8) and 3p11.2 (rs2055109; P = 3.94 × 10−8). We also found suggestive evidence of association at a previously reported prostate cancer susceptibility locus at 2p11 (rs2028898; P = 1.08 × 10−7). The identification of three new susceptibility loci should provide additional insight into the pathogenesis of prostate cancer and emphasizes the importance of conducting GWAS in diverse populations.


PLOS Genetics | 2011

Identification, replication, and fine-mapping of Loci associated with adult height in individuals of african ancestry.

Amidou N'Diaye; Gary K. Chen; C. Palmer; Bing Ge; Bamidele O. Tayo; Rasika A. Mathias; Jingzhong Ding; Michael A. Nalls; Adebowale Adeyemo; Véronique Adoue; Christine B. Ambrosone; Larry D. Atwood; Elisa V. Bandera; Lewis C. Becker; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Eric Boerwinkle; Angela Britton; Graham Casey; Stephen J. Chanock; Ellen W. Demerath; Sandra L. Deming; W. Ryan Diver; Caroline S. Fox; Tamara B. Harris; Dena Hernandez; Jennifer J. Hu; Sue A. Ingles; Esther M. John

Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.

Collaboration


Dive into the Gary K. Chen's collaboration.

Top Co-Authors

Avatar

Christopher A. Haiman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Brian E. Henderson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie Bernstein

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue A. Ingles

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Daniel O. Stram

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge