Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary L. Mason is active.

Publication


Featured researches published by Gary L. Mason.


Journal of Virology | 2004

Transmission of Prions from Mule Deer and Elk with Chronic Wasting Disease to Transgenic Mice Expressing Cervid PrP

Shawn R. Browning; Gary L. Mason; Tanya Seward; Mike Green; Gwyneth A. J. Eliason; Candace K. Mathiason; Michael W. Miller; Elizabeth S. Williams; Ed Hoover; Glenn C. Telling

ABSTRACT We generated mice expressing cervid prion protein to produce a transgenic system simulating chronic wasting disease (CWD) in deer and elk. While normal mice were resistant to CWD, these transgenic mice uniformly developed signs of neurological dysfunction ∼230 days following intracerebral inoculation with four CWD isolates. Inoculated transgenic mice homozygous for the transgene array developed disease after ∼160 days. The brains of sick transgenic mice exhibited widespread spongiform degeneration and contained abnormal prion protein and abundant amyloid plaques, many of which were florid plaques. Transmission studies indicated that the same prion strain caused CWD in the analyzed mule deer and elk. These mice provide a new and reliable tool for detecting CWD prions.


PLOS ONE | 2009

Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure.

Candace K. Mathiason; Sheila A. Hays; Jenny G. Powers; Jeanette Hayes-Klug; Julia A. Langenberg; Sallie J. Dahmes; David A. Osborn; Karl V. Miller; Robert J. Warren; Gary L. Mason; Edward A. Hoover

Key to understanding the epidemiology and pathogenesis of prion diseases, including chronic wasting disease (CWD) of cervids, is determining the mode of transmission from one individual to another. We have previously reported that saliva and blood from CWD-infected deer contain sufficient infectious prions to transmit disease upon passage into naïve deer. Here we again use bioassays in deer to show that blood and saliva of pre-symptomatic deer contain infectious prions capable of infecting naïve deer and that naïve deer exposed only to environmental fomites from the suites of CWD-infected deer acquired CWD infection after a period of 15 months post initial exposure. These results help to further explain the basis for the facile transmission of CWD, highlight the complexities associated with CWD transmission among cervids in their natural environment, emphasize the potential utility of blood-based testing to detect pre-clinical CWD infection, and could augur similar transmission dynamics in other prion infections.


Applied and Environmental Microbiology | 2009

Escherichia coli O157:H7 strains that persist in feedlot cattle are genetically related and demonstrate an enhanced ability to adhere to intestinal epithelial cells.

Brandon A. Carlson; Kendra K. Nightingale; Gary L. Mason; John R. Ruby; W. Travis Choat; Guy H. Loneragan; G. C. Smith; John N. Sofos; K. E. Belk

ABSTRACT A longitudinal study was conducted to investigate the nature of Escherichia coli O157:H7 colonization of feedlot cattle over the final 100 to 110 days of finishing. Rectal fecal grab samples were collected from an initial sample population of 788 steers every 20 to 22 days and microbiologically analyzed to detect E. coli O157:H7. The identities of presumptive colonies were confirmed using a multiplex PCR assay that screened for gene fragments unique to E. coli O157:H7 (rfbE and fliCh7) and other key virulence genes (eae, stx1, and stx2). Animals were classified as having persistent shedding (PS), transient shedding (TS), or nonshedding (NS) status if they consecutively shed the same E. coli O157:H7 genotype (based on the multiplex PCR profile), exhibited variable E. coli O157 shedding, or never shed morphologically typical E. coli O157, respectively. Overall, 1.0% and 1.4% of steers were classified as PS and NS animals, respectively. Characterization of 132 E. coli O157:H7 isolates from PS and TS animals by pulsed-field gel electrophoresis (PFGE) typing yielded 32 unique PFGE types. One predominant PFGE type accounted for 53% of all isolates characterized and persisted in cattle throughout the study. Isolates belonging to this predominant and persistent PFGE type demonstrated an enhanced (P < 0.0001) ability to adhere to Caco-2 human intestinal epithelial cells compared to isolates belonging to less common PFGE types but exhibited equal virulence expression. Interestingly, the attachment efficacy decreased as the genetic divergence from the predominant and persistent subtype increased. Our data support the hypothesis that certain E. coli O157:H7 strains persist in feedlot cattle, which may be partially explained by an enhanced ability to colonize the intestinal epithelium.


Journal of Virology | 2010

B Cells and Platelets Harbor Prion Infectivity in the Blood of Deer Infected with Chronic Wasting Disease

Candace K. Mathiason; Jeanette Hayes-Klug; Sheila A. Hays; Jenny G. Powers; David A. Osborn; Sallie J. Dahmes; Karl V. Miller; Robert J. Warren; Gary L. Mason; Glenn C. Telling; Alan J. Young; Edward A. Hoover

ABSTRACT Substantial evidence for prion transmission via blood transfusion exists for many transmissible spongiform encephalopathy (TSE) diseases. Determining which cell phenotype(s) is responsible for trafficking infectivity has important implications for our understanding of the dissemination of prions, as well as their detection and elimination from blood products. We used bioassay studies of native white-tailed deer and transgenic cervidized mice to determine (i) if chronic wasting disease (CWD) blood infectivity is associated with the cellular versus the cell-free/plasma fraction of blood and (ii) in particular if B-cell (MAb 2-104+), platelet (CD41/61+), or CD14+ monocyte blood cell phenotypes harbor infectious prions. All four deer transfused with the blood mononuclear cell fraction from CWD+ donor deer became PrPCWD positive by 19 months postinoculation, whereas none of the four deer inoculated with cell-free plasma from the same source developed prion infection. All four of the deer injected with B cells and three of four deer receiving platelets from CWD+ donor deer became PrPCWD positive in as little as 6 months postinoculation, whereas none of the four deer receiving blood CD14+ monocytes developed evidence of CWD infection (immunohistochemistry and Western blot analysis) after 19 months of observation. Results of the Tg(CerPrP) mouse bioassays mirrored those of the native cervid host. These results indicate that CWD blood infectivity is cell associated and suggest a significant role for B cells and platelets in trafficking CWD infectivity in vivo and support earlier tissue-based studies associating putative follicular B cells with PrPCWD. Localization of CWD infectivity with leukocyte subpopulations may aid in enhancing the sensitivity of blood-based diagnostic assays for CWD and other TSEs.


Journal of General Virology | 2012

Evidence for distinct chronic wasting disease (CWD) strains in experimental CWD in ferrets

Matthew R. Perrott; Christina J. Sigurdson; Gary L. Mason; Edward A. Hoover

Chronic wasting disease (CWD) is an evolving prion disease of cervids (deer, elk and moose) that has been recognized in North America and Korea. Infection of non-cervid reservoir or transport species in nature is not reported. However, the ferret (Mustela putorius furo) is susceptible to CWD after experimental inoculation. Here, we report that infection of ferrets with either of two ferret CWD isolates by various routes of exposure has revealed biologically distinct strain-like properties distinguished by different clinical progression and survival period. The isolates of ferret CWD were also differentiated by the distribution of the infectious prion protein (PrP(CWD)) in the brain and periphery, and by the proteinase K sensitivity of PrP(CWD). These findings suggest that diversity in prion conformers exists in CWD-infected cervids.


American Journal of Pathology | 2011

Chronic Wasting Disease Prion Trafficking via the Autonomic Nervous System

Davis M. Seelig; Gary L. Mason; Glenn C. Telling; Edward A. Hoover

Chronic wasting disease (CWD) is a fatal spongiform encephalopathy that is efficiently transmitted among members of the mammalian family Cervidae, including deer, elk, and moose. Typical of prion diseases, CWD is characterized by the conversion of the native protease-sensitive protein PrP(C) to a protease-resistant isoform, denoted PrP(RES). In native species, spread of the disease likely results from the ingestion of prion-containing excreta, including urine, saliva, or feces. Although cervid prion protein-expressing transgenic [Tg(CerPrP)] mice have been shown to be effective surrogates of natural CWD, uncertainties remain regarding the mechanisms by which CWD prions traffic in vivo, including the manner by which CWD prions traffic from the gastrointestinal tract to the central nervous system. We used elk prion protein-expressing transgenic [Tg(CerPrP-E)] mice, infected by three different routes of inoculation, and tissue-based IHC to elucidate that centripetal and centrifugal CWD prion transit pathways involve cells and fibers of the autonomic nervous systems, including the enteric nervous system and central autonomic network. Moreover, we identified CWD PrP(RES) associated with the cell bodies and processes of enteric glial cells within the enteric nervous system of CWD-infected Tg(CerPrP-E) mice. The present findings demonstrate the importance of the peripheral and central autonomic networks in CWD neuroinvasion and neuropathogenesis and suggest that enteroglial cells may facilitate the shedding of prions via the intestinal tract.


American Journal of Pathology | 2010

Pathogenesis of chronic wasting disease in cervidized transgenic mice.

Davis M. Seelig; Gary L. Mason; Glenn C. Telling; Edward A. Hoover

Chronic wasting disease (CWD) is a fatal, endemic prion disease of wild and captive cervids, including deer, elk, and moose. Typical of prion diseases, CWD is characterized by the conversion of the native, protease-sensitive protein PrP(C) to a protease-resistant isoform, denoted as PrP(RES). Here we have studied the expression of cervid PrP(C) and the pathogenesis of CWD infection in transgenic mice expressing the normal cervid prion protein (Tg[CerPrP] mice). Using tissue-based in situ immunohistochemistry protocols, we first identified cervid PrP(C) expression in the lymphoid, nervous, hemopoietic, endocrine, and certain epithelial tissues of Tg[CerPrP] mice. Tg[CerPrP] mice were then inoculated with CWD via one of four routes (intracerebral, intravenous, intraperitoneal, or oral); all groups developed spongiform encephalopathy, although the oral route required a larger infecting dose. Incubation periods were 184 +/- 13, 218 +/- 15, 200 +/- 7, and 350 +/- 27 days after inoculation, respectively. In longitudinal studies, we tracked the appearance of PrP(RES) in the brain, spleen, Peyers patches, lymph nodes, pancreatic islets of Langerhans, bone marrow, and salivary glands of preclinical and terminal mice. In addition, we documented horizontal transmission of CWD from inoculated mice and to un-inoculated cohabitant cage-mates. This work documents the multiroute susceptibility, pathogenesis, and lateral transmission of CWD infection in Tg[CerPrP] mice, affirming this model as a robust system to study this cervid transmissible spongiform encephalopathy.


Javma-journal of The American Veterinary Medical Association | 2013

Producer survey of herd-level risk factors for nursing beef calf respiratory disease

Amelia R. Woolums; Roy D. Berghaus; David Smith; Brad J. White; Terry J. Engelken; Max B. Irsik; Darin K. Matlick; A. Lee Jones; Roger W. Ellis; Isaiah J. Smith; Gary L. Mason; Emily R. Waggoner

OBJECTIVE To identify herd-level risk factors for bovine respiratory disease (BRD) in nursing beef calves. DESIGN Population-based cross-sectional survey. SAMPLE 2,600 US cow-calf producers in 3 Eastern and 3 Plains states. PROCEDURES The associations of herd characteristics with BRD detection in calves and cumulative BRD treatment incidence were determined. RESULTS 459 (177%) surveys were returned and met the inclusion criteria; 48% and 52% of these surveys were completed by producers in Plains and Eastern states, respectively. Mean (95% confidence interval) number of animals in herds in Plains and Eastern states were 102 (77 to 126) and 48 (40 to 56), respectively. Bovine respiratory disease had been detected in ≥ 1 calf in 21% of operations; ≥ 1 calf was treated for BRD and ≥ 1 calf died because of BRD in 89.2% and 46.4% of operations in which calf BRD was detected, respectively. Detection of BRD in calves was significantly associated with large herd size, detection of BRD in cows, and diarrhea in calves. Calving season length was associated with BRD in calves in Plains states but not Eastern states. Cumulative incidence of BRD treatment was negatively associated with large herd size and examination of cows to detect pregnancy and positively associated with calving during the winter, introduction of calves from an outside source, offering supplemental feed to calves, and use of an estrous cycle synchronization program for cows. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study indicated factors associated with calf BRD risk; modification of these factors could potentially decrease the incidence of BRD in nursing calves.


Journal of General Virology | 2013

Mucosal transmission and pathogenesis of chronic wasting disease in ferrets.

Matthew R. Perrott; Christina J. Sigurdson; Gary L. Mason; Edward A. Hoover

Chronic wasting disease (CWD) of cervids is almost certainly transmitted by mucosal contact with the causative prion, whether by direct (animal-to-animal) or indirect (environmental) means. Yet the sites and mechanisms of prion entry remain to be further understood. This study sought to extend this understanding by demonstrating that ferrets exposed to CWD via several mucosal routes developed infection, CWD prion protein (PrP(CWD)) amplification in lymphoid tissues, neural invasion and florid transmissible spongiform encephalopathy lesions resembling those in native cervid hosts. The ferrets developed extensive PrP(CWD) accumulation in the nervous system, retina and olfactory epithelium, with lesser deposition in tongue, muscle, salivary gland and the vomeronasal organ. PrP(CWD) accumulation in mucosal sites, including upper respiratory tract epithelium, olfactory epithelium and intestinal Peyers patches, make the shedding of prions by infected ferrets plausible. It was also observed that regionally targeted exposure of the nasopharyngeal mucosa resulted in an increased attack rate when compared with oral exposure. The latter finding suggests that nasal exposure enhances permissiveness to CWD infection. The ferret model has further potential for investigation of portals for initiation of CWD infection.


Journal of Veterinary Diagnostic Investigation | 2014

Significance of ERα, HER2, and CAV1 expression and molecular subtype classification to canine mammary gland tumor

Hitomi Shinoda; Marie E. Legare; Gary L. Mason; Jennifer L. Berkbigler; Maryam F. Afzali; Alfred F. Flint; William H. Hanneman

Canine mammary gland tumor (CMT) and human breast cancer (HBC) share many similarities regarding their risk factors, histological features, and behavior. Despite the increasing evidence of molecular marker expression as a prognostic indicator for HBC, few studies have applied this approach to CMT. The aim of the present study is to evaluate the significance of the expression of estrogen receptor–alpha (ERα), human epidermal growth factor receptor 2 (HER2), and caveolin-1 (CAV1) to the behavior and the clinical outcome of CMT. Additionally, the correlation between subtype classification (luminal A, luminal B, HER2-overexpressing, basal-like, and normal-like) and tumor behavior prognosis were assessed. Canine mammary gland tissues were immunohistochemically stained for ERα, HER2, and CAV1 and evaluated and classified into 5 subtypes on the basis of immunoreactivity. Although there were no statistically significant differences in the molecular marker immunoreactivity of different subtypes, the degree of positive staining for ERα, extranuclear ERα, HER2, and CAV1 showed significant correlations (P < 0.05) with the behavior and prognosis of the tumor. The current study indicates the prognostic value of immunohistochemical staining status of ERα, HER2, and CAV1 for CMT. In addition, some trends were seen in subtype classification on the prognosis of the tumor, implying that, although further analysis is needed, there is potential clinical application of 5-subtype classification for CMT.

Collaboration


Dive into the Gary L. Mason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel H. Gould

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge