Gavin J. McDonald
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gavin J. McDonald.
Nature | 2002
Pardis C. Sabeti; David Reich; John M. Higgins; Haninah Z. P. Levine; Daniel J. Richter; Stephen F. Schaffner; Stacey Gabriel; Jill Platko; Nick Patterson; Gavin J. McDonald; Hans Ackerman; S J Campbell; David Altshuler; Richard S. Cooper; Dominic P. Kwiatkowski; Ryk Ward; Eric S. Lander
The ability to detect recent natural selection in the human population would have profound implications for the study of human history and for medicine. Here, we introduce a framework for detecting the genetic imprint of recent positive selection by analysing long-range haplotypes in human populations. We first identify haplotypes at a locus of interest (core haplotypes). We then assess the age of each core haplotype by the decay of its association to alleles at various distances from the locus, as measured by extended haplotype homozygosity (EHH). Core haplotypes that have unusually high EHH and a high population frequency indicate the presence of a mutation that rose to prominence in the human gene pool faster than expected under neutral evolution. We applied this approach to investigate selection at two genes carrying common variants implicated in resistance to malaria: G6PD and CD40 ligand. At both loci, the core haplotypes carrying the proposed protective mutation stand out and show significant evidence of selection. More generally, the method could be used to scan the entire genome for evidence of recent positive selection.
Nature Genetics | 2004
Matthew L. Freedman; David Reich; Kathryn L. Penney; Gavin J. McDonald; Andre A. Mignault; Nick Patterson; Stacey Gabriel; Eric J. Topol; Jordan W. Smoller; Carlos N. Pato; Michele T. Pato; Tracey L. Petryshen; Laurence N. Kolonel; Eric S. Lander; Pamela Sklar; Brian E. Henderson; Joel N. Hirschhorn; David Altshuler
Population stratification refers to differences in allele frequencies between cases and controls due to systematic differences in ancestry rather than association of genes with disease. It has been proposed that false positive associations due to stratification can be controlled by genotyping a few dozen unlinked genetic markers. To assess stratification empirically, we analyzed data from 11 case-control and case-cohort association studies. We did not detect statistically significant evidence for stratification but did observe that assessments based on a few dozen markers lack power to rule out moderate levels of stratification that could cause false positive associations in studies designed to detect modest genetic risk factors. After increasing the number of markers and samples in a case-cohort study (the design most immune to stratification), we found that stratification was in fact present. Our results suggest that modest amounts of stratification can exist even in well designed studies.
Nature Genetics | 2007
Christopher A. Haiman; Nick Patterson; Matthew L. Freedman; Simon Myers; Malcolm C. Pike; Alicja Waliszewska; Julie Neubauer; Arti Tandon; Christine Schirmer; Gavin J. McDonald; Steven C Greenway; Daniel O. Stram; Loic Le Marchand; Laurence N. Kolonel; Melissa A. Frasco; David Wong; Loreall Pooler; Kristin Ardlie; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Esther M. John; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich
After the recent discovery that common genetic variation in 8q24 influences inherited risk of prostate cancer, we genotyped 2,973 SNPs in up to 7,518 men with and without prostate cancer from five populations. We identified seven risk variants, five of them previously undescribed, spanning 430 kb and each independently predicting risk for prostate cancer (P = 7.9 × 10−19 for the strongest association, and P < 1.5 × 10−4 for five of the variants, after controlling for each of the others). The variants define common genotypes that span a more than fivefold range of susceptibility to cancer in some populations. None of the prostate cancer risk variants aligns to a known gene or alters the coding sequence of an encoded protein.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Matthew L. Freedman; Christopher A. Haiman; Nick Patterson; Gavin J. McDonald; Arti Tandon; Alicja Waliszewska; Kathryn L. Penney; Robert Steen; Kristin Ardlie; Esther M. John; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich
A whole-genome admixture scan in 1,597 African Americans identified a 3.8 Mb interval on chromosome 8q24 as significantly associated with susceptibility to prostate cancer [logarithm of odds (LOD) = 7.1]. The increased risk because of inheriting African ancestry is greater in men diagnosed before 72 years of age (P < 0.00032) and may contribute to the epidemiological observation that the higher risk for prostate cancer in African Americans is greatest in younger men (and attenuates with older age). The same region was recently identified through linkage analysis of prostate cancer, followed by fine-mapping. We strongly replicated this association (P < 4.2 × 10−9) but find that the previously described alleles do not explain more than a fraction of the admixture signal. Thus, admixture mapping indicates a major, still-unidentified risk gene for prostate cancer at 8q24, motivating intense work to find it.
Nature Genetics | 2005
David Reich; Nick Patterson; Philip L. De Jager; Gavin J. McDonald; Alicja Waliszewska; Arti Tandon; Robin Lincoln; Cari DeLoa; Scott A. Fruhan; Philippe Cabre; Odile Bera; Gilbert Semana; M. Ann Kelly; David A. Francis; Kristin Ardlie; Omar Khan; Bruce Anthony Campbell Cree; Stephen L. Hauser; Jorge R. Oksenberg; David A. Hafler
Multiple sclerosis is a common disease with proven heritability, but, despite large-scale attempts, no underlying risk genes have been identified. Traditional linkage scans have so far identified only one risk haplotype for multiple sclerosis (at HLA on chromosome 6), which explains only a fraction of the increased risk to siblings. Association scans such as admixture mapping have much more power, in principle, to find the weak factors that must explain most of the disease risk. We describe here the first high-powered admixture scan, focusing on 605 African American cases and 1,043 African American controls, and report a locus on chromosome 1 that is significantly associated with multiple sclerosis.
American Journal of Human Genetics | 2007
Alkes L. Price; Nick Patterson; Fuli Yu; D. R. Cox; Alicja Waliszewska; Gavin J. McDonald; Arti Tandon; Christine Schirmer; Julie Neubauer; Gabriel Bedoya; Constanza Duque; Alberto Villegas; Maria Cátira Bortolini; Francisco M. Salzano; Carla Gallo; Guido Mazzotti; Marcela K. Tello-Ruiz; Laura Riba; Carlos A. Aguilar-Salinas; Samuel Canizales-Quinteros; Marta Menjivar; William Klitz; Brian E. Henderson; Christopher A. Haiman; Cheryl A. Winkler; Teresa Tusié-Luna; Andres Ruiz-Linares; David Reich
Admixture mapping is an economical and powerful approach for localizing disease genes in populations of recently mixed ancestry and has proven successful in African Americans. The method holds equal promise for Latinos, who typically inherit a mix of European, Native American, and African ancestry. However, admixture mapping in Latinos has not been practical because of the lack of a map of ancestry-informative markers validated in Native American and other populations. To address this, we screened multiple databases, containing millions of markers, to identify 4,186 markers that were putatively informative for determining the ancestry of chromosomal segments in Latino populations. We experimentally validated each of these markers in at least 232 new Latino, European, Native American, and African samples, and we selected a subset of 1,649 markers to form an admixture map. An advantage of our strategy is that we focused our map on markers distinguishing Native American from other ancestries and restricted it to markers with very similar frequencies in Europeans and Africans, which decreased the number of markers needed and minimized the possibility of false disease associations. We evaluated the effectiveness of our map for localizing disease genes in four Latino populations from both North and South America.
American Journal of Human Genetics | 2007
David Reich; Nick Patterson; Vijaya Ramesh; Philip L. De Jager; Gavin J. McDonald; Arti Tandon; Edwin Choy; Donglei Hu; Bani Tamraz; Ludmila Pawlikowska; Christina Wassel-Fyr; Scott Huntsman; Alicja Waliszewska; Elizabeth Rossin; Rongling Li; Melissa Garcia; Alex P. Reiner; Robert E. Ferrell; Steve Cummings; Pui-Yan Kwok; Tamara B. Harris; Joseph M. Zmuda; Elad Ziv
Circulating levels of inflammatory markers can predict cardiovascular disease risk. To identify genes influencing the levels of these markers, we genotyped 1,343 single-nucleotide polymorphisms (SNPs) in 1,184 African Americans from the Health, Aging and Body Composition (Health ABC) Study. Using admixture mapping, we found a significant association of interleukin 6 soluble receptor (IL-6 SR) with European ancestry on chromosome 1 (LOD 4.59), in a region that includes the gene for this receptor (IL-6R). Genotyping 19 SNPs showed that the effect is largely explained by an allele at 4% frequency in West Africans and at 35% frequency in European Americans, first described as associated with IL-6 SR in a Japanese cohort. We replicate this association (P<<1.0x10-12) and also demonstrate a new association with circulating levels of a different molecule, IL-6 (P<3.4x10-5). After replication in 1,674 European Americans from Health ABC, the combined result is even more significant: P<<1.0x10-12 for IL-6 SR, and P<2.0x10-9 for IL-6. These results also serve as an important proof of principle, showing that admixture mapping can not only coarsely localize but can also fine map a phenotypically important variant.
Osteoporosis International | 2007
John R. Shaffer; Candace M. Kammerer; David Reich; Gavin J. McDonald; Nick Patterson; Bret H. Goodpaster; D. C. Bauer; J. Li; Anne B. Newman; Jane A. Cauley; Tamara B. Harris; Francis Tylavsky; Robert E. Ferrell; Joseph M. Zmuda
SummaryIndividual-specific percent European ancestry was assessed in 1,277 African Americans. We found significant correlations between proportion of European ancestry and several musculoskeletal traits, indicating that admixture mapping may be a useful strategy for locating genes affecting these traits.IntroductionGenotype data for admixed populations can be used to detect chromosomal regions influencing disease risk if allele frequencies at disease-related loci differ between parental populations. We assessed evidence for differentially distributed alleles affecting bone and body composition traits in African Americans.MethodsBone mineral density (BMD) and body composition data were collected for 1,277 African and 1,790 European Americans (aged 70–79). Maximum likelihood methods were used to estimate individual-specific percent European ancestry for African Americans genotyped at 37 ancestry-informative genetic markers. Partial correlations between body composition traits and percent European ancestry were calculated while simultaneously adjusting for the effects of covariates.ResultsPercent European ancestry (median = 18.7%) in African Americans was correlated with femoral neck BMD in women (r = −0.18, p < 10−5) and trabecular spine BMD in both sexes (r = −0.18, p < 10−5) independently of body size, fat, lean mass, and other covariates. Significant associations of European ancestry with appendicular lean mass (r = −0.19, p < 10−10), total lean mass (r = −0.12, p < 10−4), and total body fat (r = 0.09, p < 0.002) were also observed for both sexes.ConclusionsThese results indicate that some population differences in body composition may be due to population-specific allele frequencies, suggesting the utility of admixture mapping for identifying susceptibility genes for osteoporosis, sarcopenia, and obesity.
American Journal of Human Genetics | 2004
Michael W. Smith; Nick Patterson; James A. Lautenberger; Ann L. Truelove; Gavin J. McDonald; Alicja Waliszewska; Bailey Kessing; Michael Malasky; Charles R. Scafe; Ernest Le; Philip L. De Jager; Andre A. Mignault; Zeng Yi; Myron Essex; Jean-Louis Sankalé; Jason H. Moore; Kwabena A. Poku; John P. Phair; James J. Goedert; David Vlahov; Scott M. Williams; Sarah A. Tishkoff; Cheryl A. Winkler; Francisco M. De La Vega; Trevor Woodage; John J. Sninsky; David A. Hafler; David Altshuler; Dennis A. Gilbert; Stephen J. O’Brien
Science | 2005
Wendy Winckler; Simon Myers; Daniel J. Richter; Robert C. Onofrio; Gavin J. McDonald; Ronald E. Bontrop; Gilean McVean; Stacey Gabriel; David Reich; Peter Donnelly; David Altshuler