Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavin R. Oliver is active.

Publication


Featured researches published by Gavin R. Oliver.


PLOS Genetics | 2014

Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

Mitesh J. Borad; Mia D. Champion; Jan B. Egan; Winnie S. Liang; Rafael Fonseca; Alan H. Bryce; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Maitray D. Patel; Scott W. Young; Joseph M. Collins; Alvin C. Silva; Rachel M. Condjella; Matthew S. Block; Robert R. McWilliams; Konstantinos N. Lazaridis; Eric W. Klee; Keith C. Bible; Pamela Jo Harris; Gavin R. Oliver; Jaysheel D. Bhavsar; Asha Nair; Sumit Middha; Yan W. Asmann; Jean Pierre A Kocher; Kimberly A. Schahl; Benjamin R. Kipp; Emily G. Barr Fritcher; Angela Baker

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


Journal of Clinical Oncology | 2011

Development and Independent Validation of a Prognostic Assay for Stage II Colon Cancer Using Formalin-Fixed Paraffin-Embedded Tissue

Richard D. Kennedy; Max Bylesjo; Peter Kerr; Timothy Davison; Julie Black; Elaine Kay; Robert J. Holt; Vitali Proutski; Miika Ahdesmäki; Vadim Farztdinov; Nicolas Goffard; Peter Hey; Fionnuala McDyer; Karl Mulligan; Julie Mussen; Eamonn J. O'Brien; Gavin R. Oliver; Steven M. Walker; Jude M. Mulligan; Claire Wilson; Andreas Winter; D O'Donoghue; Hugh Mulcahy; Jacintha O'Sullivan; Kieran Sheahan; John Hyland; Rajiv Dhir; Oliver F. Bathe; Ola Winqvist; Upender Manne

PURPOSE Current prognostic factors are poor at identifying patients at risk of disease recurrence after surgery for stage II colon cancer. Here we describe a DNA microarray-based prognostic assay using clinically relevant formalin-fixed paraffin-embedded (FFPE) samples. PATIENTS AND METHODS A gene signature was developed from a balanced set of 73 patients with recurrent disease (high risk) and 142 patients with no recurrence (low risk) within 5 years of surgery. RESULTS The 634-probe set signature identified high-risk patients with a hazard ratio (HR) of 2.62 (P < .001) during cross validation of the training set. In an independent validation set of 144 samples, the signature identified high-risk patients with an HR of 2.53 (P < .001) for recurrence and an HR of 2.21 (P = .0084) for cancer-related death. Additionally, the signature was shown to perform independently from known prognostic factors (P < .001). CONCLUSION This gene signature represents a novel prognostic biomarker for patients with stage II colon cancer that can be applied to FFPE tumor samples.


Clinical Chemistry | 2015

Bioinformatics for Clinical Next Generation Sequencing

Gavin R. Oliver; Steven N. Hart; Eric W. Klee

BACKGROUND Next generation sequencing (NGS)-based assays continue to redefine the field of genetic testing. Owing to the complexity of the data, bioinformatics has become a necessary component in any laboratory implementing a clinical NGS test. CONTENT The computational components of an NGS-based work flow can be conceptualized as primary, secondary, and tertiary analytics. Each of these components addresses a necessary step in the transformation of raw data into clinically actionable knowledge. Understanding the basic concepts of these analysis steps is important in assessing and addressing the informatics needs of a molecular diagnostics laboratory. Equally critical is a familiarity with the regulatory requirements addressing the bioinformatics analyses. These and other topics are covered in this review article. SUMMARY Bioinformatics has become an important component in clinical laboratories generating, analyzing, maintaining, and interpreting data from molecular genetics testing. Given the rapid adoption of NGS-based clinical testing, service providers must develop informatics work flows that adhere to the rigor of clinical laboratory standards, yet are flexible to changes as the chemistry and software for analyzing sequencing data mature.


Bioinformatics | 2014

PatternCNV: a versatile tool for detecting copy number changes from exome sequencing data

Chen Wang; Jared M. Evans; Aditya Bhagwate; Naresh Prodduturi; Vivekananda Sarangi; Mridu Middha; Hugues Sicotte; Peter T. Vedell; Steven N. Hart; Gavin R. Oliver; Jean Pierre A Kocher; Matthew J. Maurer; Anne J. Novak; Susan L. Slager; James R. Cerhan; Yan W. Asmann

Motivation: Exome sequencing (exome-seq) data, which are typically used for calling exonic mutations, have also been utilized in detecting DNA copy number variations (CNVs). Despite the existence of several CNV detection tools, there is still a great need for a sensitive and an accurate CNV-calling algorithm with built-in QC steps, and does not require a paired reference for each sample. Results: We developed a novel method named PatternCNV, which (i) accounts for the read coverage variations between exons while leveraging the consistencies of this variability across different samples; (ii) reduces alignment BAM files to WIG format and therefore greatly accelerates computation; (iii) incorporates multiple QC measures designed to identify outlier samples and batch effects; and (iv) provides a variety of visualization options including chromosome, gene and exon-level views of CNVs, along with a tabular summarization of the exon-level CNVs. Compared with other CNV-calling algorithms using data from a lymphoma exome-seq study, PatternCNV has higher sensitivity and specificity. Availability and implementation: The software for PatternCNV is implemented using Perl and R, and can be used in Mac or Linux environments. Software and user manual are available at http://bioinformaticstools.mayo.edu/research/patterncnv/, and R package at https://github.com/topsoil/patternCNV/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


BMC Genomics | 2009

Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues

Anita Grigoriadis; Gavin R. Oliver; Austin Tanney; Howard Kendrick; Matthew John Smalley; Parmjit S. Jat; A. Munro Neville

BackgroundMore than 20% of human transcripts have naturally occurring antisense products (or natural antisense transcripts – NATs), some of which may play a key role in a range of human diseases. To date, several databases of in silico defined human sense-antisense (SAS) pairs have appeared, however no study has focused on differential expression of SAS pairs in breast tissue. We therefore investigated the expression levels of sense and antisense transcripts in normal and malignant human breast epithelia using the Affymetrix HG-U133 Plus 2.0 and Almac Diagnostics Breast Cancer DSA microarray technologies as well as massively parallel signature sequencing (MPSS) data.ResultsThe expression of more than 2500 antisense transcripts were detected in normal breast duct luminal cells and in primary breast tumors substantially enriched for their epithelial cell content by DSA microarray. Expression of 431 NATs were confirmed by either of the other two technologies. A corresponding sense transcript could be identified on DSA for 257 antisense transcripts. Of these SAS pairs, 163 have not been previously reported. A positive correlation of differential expression between normal and malignant breast samples was observed for most SAS pairs. Orientation specific RT-QPCR of selected SAS pairs validated their expression in several breast cancer cell lines and solid breast tumours.ConclusionDisease-focused and antisense enriched microarray platforms (such as Breast Cancer DSA) confirm the assumption that antisense transcription in the human breast is more prevalent than previously anticipated. Expression of a proportion of these NATs has already been confirmed by other technologies while the true existence of the remaining ones has to be validated. Nevertheless, future studies will reveal whether the relative abundances of antisense and sense transcripts have regulatory influences on the translation of these mRNAs.


BMC Medical Genomics | 2008

Generation of a non-small cell lung cancer transcriptome microarray

Austin Tanney; Gavin R. Oliver; Vadim Farztdinov; Richard D. Kennedy; Jude M. Mulligan; Ciaran Fulton; Susan M. Farragher; John K. Field; Patrick G. Johnston; D. Paul Harkin; Vitali Proutski; Karl Mulligan

BackgroundNon-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. At present no reliable biomarkers are available to guide the management of this condition. Microarray technology may allow appropriate biomarkers to be identified but present platforms are lacking disease focus and are thus likely to miss potentially vital information contained in patient tissue samples.MethodsA combination of large-scale in-house sequencing, gene expression profiling and public sequence and gene expression data mining were used to characterise the transcriptome of NSCLC and the data used to generate a disease-focused microarray – the Lung Cancer DSA research tool.ResultsBuilt on the Affymetrix GeneChip platform, the Lung Cancer DSA research tool allows for interrogation of ~60,000 transcripts relevant to Lung Cancer, tens of thousands of which are unavailable on leading commercial microarrays.ConclusionWe have developed the first high-density disease specific transcriptome microarray. We present the array design process and the results of experiments carried out to demonstrate the arrays utility. This approach serves as a template for the development of other disease transcriptome microarrays, including non-neoplastic diseases.


F1000Research | 2012

Considerations for clinical read alignment and mutational profiling using next-generation sequencing

Gavin R. Oliver

Next-generation sequencing technologies are increasingly being applied in clinical settings, however the data are characterized by a range of platform-specific artifacts making downstream analysis problematic and error- prone. One major application of NGS is in the profiling of clinically relevant mutations whereby sequences are aligned to a reference genome and potential mutations assessed and scored. Accurate sequence alignment is pivotal in reliable assessment of potential mutations however selection of appropriate alignment tools is a non-trivial task complicated by the availability of multiple solutions each with its own performance characteristics. Using targeted analysis of BRCA1 as an example, we have simulated and mutated a test dataset based on Illumina sequencing technology. Our findings reveal key differences in the abilities of a range of common commercial and open source alignment tools to facilitate accurate downstream detection of a range of mutations. These observations will be of importance to anyone using NGS to profile mutations in clinical or basic research.


Nature Communications | 2018

Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes

Gwen Lomberk; Yuna Blum; Rémy Nicolle; Asha Nair; Krutika Satish Gaonkar; Laetitia Marisa; Angela Mathison; Zhifu Sun; Huihuang Yan; Nabila Elarouci; Lucile Armenoult; Mira Ayadi; Tamas Ordog; Jeong Heon Lee; Gavin R. Oliver; Eric W. Klee; Vincent Moutardier; Odile Gayet; Benjamin Bian; Pauline Duconseil; Marine Gilabert; Martin Bigonnet; Stéphane Garcia; Olivier Turrini; Jean Robert Delpero; Marc Giovannini; Philippe Grandval; Mohamed Gasmi; Véronique Secq; Aurélien de Reyniès

Recent studies have offered ample insight into genome-wide expression patterns to define pancreatic ductal adenocarcinoma (PDAC) subtypes, although there remains a lack of knowledge regarding the underlying epigenomics of PDAC. Here we perform multi-parametric integrative analyses of chromatin immunoprecipitation-sequencing (ChIP-seq) on multiple histone modifications, RNA-sequencing (RNA-seq), and DNA methylation to define epigenomic landscapes for PDAC subtypes, which can predict their relative aggressiveness and survival. Moreover, we describe the state of promoters, enhancers, super-enhancers, euchromatic, and heterochromatic regions for each subtype. Further analyses indicate that the distinct epigenomic landscapes are regulated by different membrane-to-nucleus pathways. Inactivation of a basal-specific super-enhancer associated pathway reveals the existence of plasticity between subtypes. Thus, our study provides new insight into the epigenetic landscapes associated with the heterogeneity of PDAC, thereby increasing our mechanistic understanding of this disease, as well as offering potential new markers and therapeutic targets.Pancreatic ductal adenocarcinoma (PDAC) is a complex disease and its underlying epigenomic heterogeneity is not fully understood. Here, the authors utilize patient-derived PDAC xenografts to define the epigenomic landscape of PDAC, highlighting chromatin states linked to differing disease aggressiveness and survival.


PLOS ONE | 2017

Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing

Michael T. Zimmermann; Raul Urrutia; Gavin R. Oliver; Patrick R. Blackburn; Margot A. Cousin; Nicole J. Bozeck; Eric W. Klee

Variants in the TGFBR2 kinase domain cause several human diseases and can increase propensity for cancer. The widespread application of next generation sequencing within the setting of Individualized Medicine (IM) is increasing the rate at which TGFBR2 kinase domain variants are being identified. However, their clinical relevance is often uncertain. Consequently, we sought to evaluate the use of molecular modeling and molecular dynamics (MD) simulations for assessing the potential impact of variants within this domain. We documented the structural differences revealed by these models across 57 variants using independent MD simulations for each. Our simulations revealed various mechanisms by which variants may lead to functional alteration; some are revealed energetically, while others structurally or dynamically. We found that the ATP binding site and activation loop dynamics may be affected by variants at positions throughout the structure. This prediction cannot be made from the linear sequence alone. We present our structure-based analyses alongside those obtained using several commonly used genomics-based predictive algorithms. We believe the further mechanistic information revealed by molecular modeling will be useful in guiding the examination of clinically observed variants throughout the exome, as well as those likely to be discovered in the near future by clinical tests leveraging next-generation sequencing through IM efforts.


BMC Cancer | 2010

The Colorectal cancer disease-specific transcriptome may facilitate the discovery of more biologically and clinically relevant information

Wendy L. Allen; Puthen V. Jithesh; Gavin R. Oliver; Irina Proutski; Daniel B. Longley; Heinz-Josef Lenz; Vitali Proutski; Paul Harkin; Patrick G. Johnston

BackgroundTo date, there are no clinically reliable predictive markers of response to the current treatment regimens for advanced colorectal cancer. The aim of the current study was to compare and assess the power of transcriptional profiling using a generic microarray and a disease-specific transcriptome-based microarray. We also examined the biological and clinical relevance of the disease-specific transcriptome.MethodsDNA microarray profiling was carried out on isogenic sensitive and 5-FU-resistant HCT116 colorectal cancer cell lines using the Affymetrix HG-U133 Plus2.0 array and the Almac Diagnostics Colorectal cancer disease specific Research tool. In addition, DNA microarray profiling was also carried out on pre-treatment metastatic colorectal cancer biopsies using the colorectal cancer disease specific Research tool. The two microarray platforms were compared based on detection of probesets and biological information.ResultsThe results demonstrated that the disease-specific transcriptome-based microarray was able to out-perform the generic genomic-based microarray on a number of levels including detection of transcripts and pathway analysis. In addition, the disease-specific microarray contains a high percentage of antisense transcripts and further analysis demonstrated that a number of these exist in sense:antisense pairs. Comparison between cell line models and metastatic CRC patient biopsies further demonstrated that a number of the identified sense:antisense pairs were also detected in CRC patient biopsies, suggesting potential clinical relevance.ConclusionsAnalysis from our in vitro and clinical experiments has demonstrated that many transcripts exist in sense:antisense pairs including IGF2BP2, which may have a direct regulatory function in the context of colorectal cancer. While the functional relevance of the antisense transcripts has been established by many studies, their functional role is currently unclear; however, the numbers that have been detected by the disease-specific microarray would suggest that they may be important regulatory transcripts. This study has demonstrated the power of a disease-specific transcriptome-based approach and highlighted the potential novel biologically and clinically relevant information that is gained when using such a methodology.

Collaboration


Dive into the Gavin R. Oliver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge