Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Pierre A Kocher is active.

Publication


Featured researches published by Jean Pierre A Kocher.


PLOS Genetics | 2014

Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

Mitesh J. Borad; Mia D. Champion; Jan B. Egan; Winnie S. Liang; Rafael Fonseca; Alan H. Bryce; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Maitray D. Patel; Scott W. Young; Joseph M. Collins; Alvin C. Silva; Rachel M. Condjella; Matthew S. Block; Robert R. McWilliams; Konstantinos N. Lazaridis; Eric W. Klee; Keith C. Bible; Pamela Jo Harris; Gavin R. Oliver; Jaysheel D. Bhavsar; Asha Nair; Sumit Middha; Yan W. Asmann; Jean Pierre A Kocher; Kimberly A. Schahl; Benjamin R. Kipp; Emily G. Barr Fritcher; Angela Baker

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


Hypertension | 2008

Genomic Association Analysis Suggests Chromosome 12 Locus Influencing Antihypertensive Response to Thiazide Diuretic

Stephen T. Turner; Kent R. Bailey; Brooke L. Fridley; Arlene B. Chapman; Gary L. Schwartz; High Seng Chai; Hugues Sicotte; Jean Pierre A Kocher; Andrei S. Rodin; Eric Boerwinkle

We conducted a genome-wide association study to identify novel genes influencing diastolic blood pressure (BP) response to hydrochlorothiazide, a commonly prescribed thiazide diuretic preferred for the treatment of high BP. Affymetrix GeneChip Human Mapping 100K Arrays were used to measure single nucleotide polymorphisms across the 22 autosomes in 194 non-Hispanic black subjects and 195 non-Hispanic white subjects with essential hypertension selected from opposite tertiles of the race- and sex-specific distributions of age-adjusted diastolic BP response to hydrochlorothiazide (25 mg daily, PO, for 4 weeks). The black sample consisted of 97 “good” responders (diastolic BP response [mean±SD]=−18.3±4.2 mm Hg; age=47.1±6.1 years; 51.5% women) and 97 “poor” responders (diastolic BP response=−0.18±4.3; age=47.4±6.5 years; 51.5% women). Haplotype trend regression identified a region of chromosome 12q15 in which haplotypes constructed from 3 successive single nucleotide polymorphisms (rs317689, rs315135, and rs7297610) in proximity to lysozyme (LYZ), YEATS domain containing 4 (YEATS4), and fibroblast growth receptor substrate 2 (FRS2) were significantly associated with diastolic BP response (nominal P=2.39×10−7; Bonferroni corrected P=0.024; simulated experiment-wise P=0.040). Genotyping of 35 additional single nucleotide polymorphisms selected to “tag” linkage disequilibrium blocks in these genes provided corroboration that variation in LYZ and YEATS4 was associated with diastolic BP response in a statistically independent data set of 291 black subjects and in the sample of 294 white subjects. These results support the use of genome-wide association analyses to identify novel genes influencing antihypertensive drug responses.


BMC Genomics | 2014

CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data

Zhifu Sun; Jared M. Evans; Aditya Bhagwate; Sumit Middha; Matthew A Bockol; Huihuang Yan; Jean Pierre A Kocher

BackgroundmiRNAs play a key role in normal physiology and various diseases. miRNA profiling through next generation sequencing (miRNA-seq) has become the main platform for biological research and biomarker discovery. However, analyzing miRNA sequencing data is challenging as it needs significant amount of computational resources and bioinformatics expertise. Several web based analytical tools have been developed but they are limited to processing one or a pair of samples at time and are not suitable for a large scale study. Lack of flexibility and reliability of these web applications are also common issues.ResultsWe developed a Comprehensive Analysis Pipeline for microRNA Sequencing data (CAP-miRSeq) that integrates read pre-processing, alignment, mature/precursor/novel miRNA detection and quantification, data visualization, variant detection in miRNA coding region, and more flexible differential expression analysis between experimental conditions. According to computational infrastructure, users can install the package locally or deploy it in Amazon Cloud to run samples sequentially or in parallel for a large number of samples for speedy analyses. In either case, summary and expression reports for all samples are generated for easier quality assessment and downstream analyses. Using well characterized data, we demonstrated the pipeline’s superior performances, flexibility, and practical use in research and biomarker discovery.ConclusionsCAP-miRSeq is a powerful and flexible tool for users to process and analyze miRNA-seq data scalable from a few to hundreds of samples. The results are presented in the convenient way for investigators or analysts to conduct further investigation and discovery.


Journal of Cheminformatics | 2011

Multilevel Parallelization of AutoDock 4.2.

Andrew P. Norgan; Paul K. Coffman; Jean Pierre A Kocher; David J. Katzmann; Carlos P. Sosa

BackgroundVirtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).ResultsUsing MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers.ConclusionsUsing MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDocks Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.


Journal of the American Medical Informatics Association | 2011

Drug side effect extraction from clinical narratives of psychiatry and psychology patients.

Sunghwan Sohn; Jean Pierre A Kocher; Christopher G. Chute; Guergana Savova

OBJECTIVE To extract physician-asserted drug side effects from electronic medical record clinical narratives. MATERIALS AND METHODS Pattern matching rules were manually developed through examining keywords and expression patterns of side effects to discover an individual side effect and causative drug relationship. A combination of machine learning (C4.5) using side effect keyword features and pattern matching rules was used to extract sentences that contain side effect and causative drug pairs, enabling the system to discover most side effect occurrences. Our system was implemented as a module within the clinical Text Analysis and Knowledge Extraction System. RESULTS The system was tested in the domain of psychiatry and psychology. The rule-based system extracting side effects and causative drugs produced an F score of 0.80 (0.55 excluding allergy section). The hybrid system identifying side effect sentences had an F score of 0.75 (0.56 excluding allergy section) but covered more side effect and causative drug pairs than individual side effect extraction. DISCUSSION The rule-based system was able to identify most side effects expressed by clear indication words. More sophisticated semantic processing is required to handle complex side effect descriptions in the narrative. We demonstrated that our system can be trained to identify sentences with complex side effect descriptions that can be submitted to a human expert for further abstraction. CONCLUSION Our system was able to extract most physician-asserted drug side effects. It can be used in either an automated mode for side effect extraction or semi-automated mode to identify side effect sentences that can significantly simplify abstraction by a human expert.


PLOS ONE | 2012

Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles

Rochelle R. Arvizo; Karuna Giri; Daniel F. Moyano; Oscar R. Miranda; Benjamin J. Madden; Daniel J. McCormick; Resham Bhattacharya; Vincent M. Rotello; Jean Pierre A Kocher; Priyabrata Mukherjee

Background We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development. Methods/Principal Findings Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells. Conclusion We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer.


Nucleic Acids Research | 2016

GWASdb v2: an update database for human genetic variants identified by genome-wide association studies

Mulin Jun Li; Zipeng Liu; Panwen Wang; Maria Pik Wong; Matthew R. Nelson; Jean Pierre A Kocher; Meredith Yeager; Pak Sham; Stephen J. Chanock; Zhengyuan Xia; Junwen Wang

Genome-wide association studies (GWASs), now as a routine approach to study single-nucleotide polymorphism (SNP)-trait association, have uncovered over ten thousand significant trait/disease associated SNPs (TASs). Here, we updated GWASdb (GWASdb v2, http://jjwanglab.org/gwasdb) which provides comprehensive data curation and knowledge integration for GWAS TASs. These updates include: (i) Up to August 2015, we collected 2479 unique publications from PubMed and other resources; (ii) We further curated moderate SNP-trait associations (P-value < 1.0×10−3) from each original publication, and generated a total of 252 530 unique TASs in all GWASdb v2 collected studies; (iii) We manually mapped 1610 GWAS traits to 501 Human Phenotype Ontology (HPO) terms, 435 Disease Ontology (DO) terms and 228 Disease Ontology Lite (DOLite) terms. For each ontology term, we also predicted the putative causal genes; (iv) We curated the detailed sub-populations and related sample size for each study; (v) Importantly, we performed extensive function annotation for each TAS by incorporating gene-based information, ENCODE ChIP-seq assays, eQTL, population haplotype, functional prediction across multiple biological domains, evolutionary signals and disease-related annotation; (vi) Additionally, we compiled a SNP-drug response association dataset for 650 pharmacogenetic studies involving 257 drugs in this update; (vii) Last, we improved the user interface of website.


Frontiers in Oncology | 2012

Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

Krishna R. Kalari; David Rossell; Brian M. Necela; Yan W. Asmann; Asha Nair; Saurabh Baheti; Jennifer M. Kachergus; Curtis S. Younkin; Tiffany R. Baker; Jennifer M. Carr; Xiaojia Tang; Michael P. Walsh; High Seng Chai; Zhifu Sun; Steven N. Hart; Alexey A. Leontovich; Asif Hossain; Jean Pierre A Kocher; Edith A. Perez; David Reisman; Alan P. Fields; E. Aubrey Thompson

KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.


PLOS ONE | 2014

IM-TORNADO: A tool for comparison of 16S reads from paired-end libraries

Patricio Jeraldo; Krishna R. Kalari; Xianfeng Chen; Jaysheel D. Bhavsar; Ashutosh Mangalam; Bryan A. White; Heidi Nelson; Jean Pierre A Kocher; Nicholas Chia

Motivation 16S rDNA hypervariable tag sequencing has become the de facto method for accessing microbial diversity. Illumina paired-end sequencing, which produces two separate reads for each DNA fragment, has become the platform of choice for this application. However, when the two reads do not overlap, existing computational pipelines analyze data from read separately and underutilize the information contained in the paired-end reads. Results We created a workflow known as Illinois Mayo Taxon Organization from RNA Dataset Operations (IM-TORNADO) for processing non-overlapping reads while retaining maximal information content. Using synthetic mock datasets, we show that the use of both reads produced answers with greater correlation to those from full length 16S rDNA when looking at taxonomy, phylogeny, and beta-diversity. Availability and Implementation IM-TORNADO is freely available at http://sourceforge.net/projects/imtornado and produces BIOM format output for cross compatibility with other pipelines such as QIIME, mothur, and phyloseq.


Diabetes | 2012

Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes.

Tumpa Dutta; High Seng Chai; Lawrence E. Ward; Aditya Ghosh; Xuan Mai T Persson; G. Charles Ford; Yogish C. Kudva; Zhifu Sun; Yan W. Asmann; Jean Pierre A Kocher; K. Sreekumaran Nair

Insulin regulates many cellular processes, but the full impact of insulin deficiency on cellular functions remains to be defined. Applying a mass spectrometry–based nontargeted metabolomics approach, we report here alterations of 330 plasma metabolites representing 33 metabolic pathways during an 8-h insulin deprivation in type 1 diabetic individuals. These pathways included those known to be affected by insulin such as glucose, amino acid and lipid metabolism, Krebs cycle, and immune responses and those hitherto unknown to be altered including prostaglandin, arachidonic acid, leukotrienes, neurotransmitters, nucleotides, and anti-inflammatory responses. A significant concordance of metabolome and skeletal muscle transcriptome–based pathways supports an assumption that plasma metabolites are chemical fingerprints of cellular events. Although insulin treatment normalized plasma glucose and many other metabolites, there were 71 metabolites and 24 pathways that differed between nondiabetes and insulin-treated type 1 diabetes. Confirmation of many known pathways altered by insulin using a single blood test offers confidence in the current approach. Future research needs to be focused on newly discovered pathways affected by insulin deficiency and systemic insulin treatment to determine whether they contribute to the high morbidity and mortality in T1D despite insulin treatment.

Collaboration


Dive into the Jean Pierre A Kocher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumit Middha

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge