Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gayle A. Orner is active.

Publication


Featured researches published by Gayle A. Orner.


The FASEB Journal | 2006

Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice

Melinda C. Myzak; W.-Mohaiza Dashwood; Gayle A. Orner; Emily Ho; Roderick H. Dashwood

Sulforaphane (SFN) is an isothiocyanate from broccoli that induces phase 2 detoxification enzymes. We recently reported that SFN acts as a histone deacetylase (HDAC) inhibitor in human colon cancer cells in vitro, and the present study sought to extend these findings in vivo. In mice treated with a single oral dose of 10 ümol SFN, there was significant inhibition of HDAC activity in the colonic mucosa after 6 h, and immunoblots revealed a concomitant increase in acetylated histones H3 and H4, which returned to control levels by 48 h. Longer‐term treatment with SFN in the diet resulted in levels of acetylated histones and p21WAF1 in the ileum, colon, prostate, and peripheral blood mononuclear cells that were elevated compared with controls. Consistent with these findings, SFN suppressed tumor development in Apcmin mice, and there was an increase in acetylated histones in the polyps, including acetylated histones specifically associated with the promoter region of the P21 and bax genes. These results provide the first evidence for HDAC inhibition by SFN in vivo and imply that such a mechanism might contribute to the cancer chemoprotective and therapeutic effects of SFN, alone or in combination with other HDAC inhibitors currently undergoing clinical trials.


Environmental Health Perspectives | 2008

Genomic Profiling Reveals an Alternate Mechanism for Hepatic Tumor Promotion by Perfluorooctanoic Acid in Rainbow Trout

Susan C. Tilton; Gayle A. Orner; Abby D. Benninghoff; Hillary M. Carpenter; Jerry D. Hendricks; Cliff Pereira; David E. Williams

Background Perfluorooctanoic acid (PFOA) is a potent hepatocarcinogen and peroxisome proliferator (PP) in rodents. Humans are not susceptible to peroxisome proliferation and are considered refractory to carcinogenesis by PPs. Previous studies with rainbow trout indicate they are also insensitive to peroxisome proliferation by the PP dehydroepiandrosterone (DHEA), but are still susceptible to enhanced hepatocarcinogenesis after chronic exposure. Objectives In this study, we used trout as a unique in vivo tumor model to study the potential for PFOA carcinogenesis in the absence of peroxisome proliferation compared with the structurally diverse PPs clofibrate (CLOF) and DHEA. Mechanisms of carcinogenesis were identified from hepatic gene expression profiles phenotypically anchored to tumor outcome. Methods We fed aflatoxin B1 or sham-initiated animals 200–1,800 ppm PFOA in the diet for 30 weeks for tumor analysis. We subsequently examined gene expression by cDNA array in animals fed PFOA, DHEA, CLOF, or 5 ppm 17β-estradiol (E2, a known tumor promoter) in the diet for 14 days. Results PFOA (1,800 ppm or 50 mg/kg/day) and DHEA treatments resulted in enhanced liver tumor incidence and multiplicity (p < 0.0001), whereas CLOF showed no effect. Carcinogenesis was independent of peroxisome proliferation, measured by lack of peroxisomal β-oxidation and catalase activity. Alternately, both tumor promoters, PFOA and DHEA, resulted in estrogenic gene signatures with strong correlation to E2 by Pearson correlation (R = 0.81 and 0.78, respectively), whereas CLOF regulated no genes in common with E2. Conclusions These data suggest that the tumor-promoting activities of PFOA in trout are due to novel mechanisms involving estrogenic signaling and are independent of peroxisome proliferation.


Mutation Research | 2002

Response of Apcmin and A33ΔNβ-cat mutant mice to treatment with tea, sulindac, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)

Gayle A. Orner; Wan Mohaiza Dashwood; Carmen A. Blum; G. Darío Díaz; Qingjie Li; Mohamad Al-Fageeh; Niall C. Tebbutt; Joan K. Heath; Matthias Ernst; Roderick H. Dashwood

There is growing interest in the potential health benefits of tea, and a recent report described the potent antimutagenic activity of white tea in comparison with green tea against several heterocyclic amines, including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) [Mutat. Res. 495 (2001) 61]. We compared the inhibitory effects of white and green teas with sulindac, a nonsteroidal anti-inflammatory agent, in two different mouse models of intestinal tumorigenesis. In the Apc(min) mouse, white and green teas given at human-relevant concentrations (1.5% w/v, 2-min brew), and sulindac (80 ppm in the drinking water), each suppressed polyp formation by approximately 50%, and the combination of white tea plus sulindac was more effective than either treatment alone (P=0.05). Mice expressing an N-terminally truncated, oncogenic version of beta-catenin (A 33(delta N beta-cat) mutant mice) developed colonic aberrant crypt foci (ACF) spontaneously, but PhIP treatment increased the incidence and number of ACF per colon. In the normal-looking intestinal mucosa of Apc(min) and A 33(delta N beta-cat) mice, white tea plus sulindac treatment markedly attenuated the expression of beta-catenin protein, and this was recapitulated in vitro in cells transiently transfected with beta-catenin plus Tcf-4 and treated with tea or the major tea polyphenol epigallocatechin-3-gallate (EGCG). Expression of a beta-catenin/Tcf reporter was inhibited by EGCG in the transfected cells, and the beta-catenin/Tcf target genes cyclin D1 and c-jun were downregulated in vivo by tea plus sulindac treatment. Collectively, the data support a chemopreventive role for tea and sulindac against intermediate and late stages of colon cancer, via effects on the beta-catenin/Tcf signaling pathway.


Carcinogenesis | 2008

Chemoprevention of dibenzo[a,l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine

David J. Castro; Zhen Yu; Christiane V. Löhr; Clifford B. Pereira; Jack Giovanini; Kay A. Fischer; Gayle A. Orner; Roderick H. Dashwood; David E. Williams

Our laboratory recently developed a mouse model of transplacental induction of lymphoma, lung and liver cancer by the polycyclic aromatic hydrocarbon, dibenzo[a,l]pyrene (DBP). Pregnant B6129SF1 females, bred to 129S1/SvIm males, were treated on day 17 of gestation with an oral dose of 15 mg/kg DBP. Beginning on day 0 of gestation, dams were given (ad lib) buffered water, 0.5% green tea, 0.5% decaffeinated green tea, caffeine or epigallocatechin-3-gallate (EGCG) (both at equivalent concentrations found in tea). The concentration of the teas (and corresponding caffeine and EGCG) was increased to 1.0% upon entering the second trimester, 1.5% at onset of the third trimester and continued at 1.5% until pups were weaned at 21 days of age. Offspring were raised with normal drinking water and AIN93G diet. Beginning at 2 months of age, offspring experienced significant mortalities due to an aggressive T-cell lymphoma as seen in our previous studies. Ingestion of caffeinated, but not decaffeinated, green tea provided modest but significant protection (P = 0.03) against mortality. Caffeine provided a more robust (P = 0.006) protection, but EGCG was without effect. Offspring also developed DBP-dependent lung adenomas. All treatments significantly reduced lung tumor multiplicity relative to controls (P < 0.02). EGCG was most effective at decreasing tumor burden (P = 0.005) by on average over 40% compared with controls. Induction of Cytochrome P450 (Cyp)1b1 in maternal liver may reduce bioavailability of DBP to the fetus as a mechanism of chemoprevention. This is the first demonstration that maternal ingestion of green tea, during pregnancy and nursing, provides protection against transplacental carcinogenesis.


Nutrition and Cancer | 2007

Comparison of White Tea, Green Tea, Epigallocatechin-3-Gallate, and Caffeine as Inhibitors of PhIP-Induced Colonic Aberrant Crypts

Orianna Carter; Rong Wang; W. Mohaiza Dashwood; Gayle A. Orner; Kay A. Fischer; Christiane V. Löhr; Clifford B. Pereira; George S. Bailey; David E. Williams; Roderick H. Dashwood

Abstract: There is growing interest in the possible health benefits of tea. We reported previously on the inhibition by white tea of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced colonic aberrant crypt foci (ACF) in the rat (4). To distinguish between blocking and suppressing effects, and thus provide mechanistic insights into prevention during the initiation versus post-initiation phases of carcinogenesis, white tea, and green tea were administered at 2% (w/v) as the sole source of drinking fluid either 2 wk before and 2 wk during PhIP dosing (100 mg/kg, every other day by oral gavage), or starting 1 wk after the carcinogen and continued until the study was terminated at 16 wk. In the former protocol, each tea produced marginal inhibition of colonic ACF, despite evidence for changes in several hepatic enzymes involved in heterocyclic amine metabolism. Post-initiation, however, the data were as follows (ACF/colon, mean ± SE): PhIP/water 12.2 ± 1.5; PhIP/white tea 5.9 ± 0.9 (** P < 0.01); PhIP/caffeine 5.9 ± 1.5 (** P < 0.01); PhIP/EGCG 3.5 ± 0.8 (***P < 0.001); PhIP/green tea 8.9 ± 1.2 (P = 0.22, not significant). In the latter study, apoptosis was determined using in situ oligo ligation and cleaved caspase-3 assays, whereas cell proliferation was assessed via bromodeoxyuridine (BrdU) incorporation. No consistent changes were seen in apoptosis assays, but BrdU labeling was as follows (percent of cells positive/colonic crypt, mean ± SE): PhIP/water 10.4 ± 0.6; PhIP/white tea 8.6 ± 0.2 (*P < 0.05); PhIP/EGCG 6.0 ± 0.85 (** P < 0.01); PhIP/caffeine 8.75 ± 0.45 (*P < 0.05); PhIP/green tea 9.5 ± 0.4 (P > 0.05, not significant). The data imply that white tea, caffeine, and EGCG may be most effective post-initiation, via the inhibition of cell proliferation in the colon and through the suppression of early lesions.


Nutrition and Cancer | 2001

Inhibition by White Tea of 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine-Induced Colonic Aberrant Crypts in the F344 Rat

Gilberto Santana-Rios; Gayle A. Orner; Meirong Xu; Maria Izquierdo-Pulido; Roderick H. Dashwood

There is growing interest in the potential health benefits of tea, including the anticarcinogenic properties. We report here that white tea, the least processed form of tea, is a potent inhibitor of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced colonic aberrant crypts in the rat. Male Fischer 344 rats were treated for 8 wk with white tea (2% wt/vol) or drinking water alone, and on alternating days in experimental Weeks 3 and 4 the animals were given PhIP (150 mg/kg body wt po) or vehicle alone. At the end of the study there were 5.65 ± 0.81 and 1.31 ± 0.27 (SD) aberrant crypt foci per colon in groups given PhIP and PhIP + white tea, respectively (n = 12, P ? 0.05). No changes were detected in N-acetyltransferase or arylsulfotransferase activities compared with controls, but there was marked induction of ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, and UDP-glucuronosyltransferase after treatment with white tea. Western blot revealed corresponding increases in cytochrome P-450 1A1 and 1A2 proteins. Enzyme assays and Western blot also revealed induction of glutathione S-transferase by white tea. There was less parent compound and 4?-hydroxy-PhIP but more PhIP-4?-O-glucuronide and PhIP-4?-O-sulfate in the urine from rats given PhIP + white tea than in urine from animals given carcinogen + drinking water. The results indicate that white tea inhibits PhIP-induced aberrant crypt foci by altering the expression of carcinogen-metabolizing enzymes, such that there is increased ring hydroxylation at the 4? position coupled with enhanced phase 2 conjugation.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Rainbow Trout (Oncorhynchus mykiss) and Ultra-Low Dose Cancer Studies

David E. Williams; Gayle A. Orner; Kristin D. Willard; Susan Tilton; Jerry D. Hendricks; Clifford B. Pereira; Abby D. Benninghoff; George S. Bailey

Cancer risk assessment utilizing rodents requires extrapolation across five orders of magnitude to estimate the Virtually Safe Dose (VSD). Regulatory agencies rely upon the Linear Extrapolated Dose (LED) except when sufficient information on mechanism of action justifies alternative models. Rainbow trout (Oncorhynchus mykiss) has been utilized at Oregon State University as a model for human cancer for forty years. Low cost and high capacity, made possible by our unique facility, along with low spontaneous background and high sensitivity, allow design and conduct of statistically challenging studies not possible in rodents. Utilization of custom microarrays demonstrates similarities in gene expression in trout and human hepatocellular carcinoma (HCC). We have completed one study employing over 42,000 trout with dibenzo[a,l]pyrene (DBP) and determined the dose resulting in 1 additional cancer in 5000 animals, a 50-fold enhancement over the mouse ED(01) study. Liver tumor incidence at low dose deviated significantly from linearity (concave down), whereas, DBP-DNA adductions deviated slightly (convex up). A second study is underway with aflatoxin B(1) (AFB(1)). Results to date indicate AFB(1) at low dose, in contrast to DBP, elicits a linear dose-response function on the log-log scale which falls below the LED with a slope slightly greater than 1.0. Such studies demonstrate the statistical power of the trout cancer model and strengthen the case for incorporation of these data-sets into risk assessment for these environmental human carcinogens.


Mutation Research | 2003

Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: Modulation of apoptosis, cell proliferation, and β-catenin/Tcf signaling

Carmen A. Blum; Meirong Xu; Gayle A. Orner; G. Darío Díaz; Qingjie Li; Wan Mohaiza Dashwood; George S. Bailey; Roderick H. Dashwood

The carcinogens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the rat that contain mutations in beta-catenin, but the mutation pattern can be influenced by exposure to dietary phytochemicals, such as the water-soluble derivative of chlorophyll called chlorophyllin. Whereas chlorophyllin is an effective blocking agent during the initiation phase, post-initiation responses depend upon the exposure protocol, and can be influenced by the initiating agent and the concentration of chlorophyllin. Post-initiation treatment with 0.001% chlorophyllin (w/v) in the drinking water promoted colon carcinogenesis in the rat, but much higher concentrations (1.0% chlorophyllin) led to suppression. Bromodeoxyuridine and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) indices revealed that the promotional concentration of 0.001% chlorophyllin increased the ratio of cell proliferation to apoptosis in the colonic crypts, whereas concentrations in the range 0.0l-1.0% chlorophyllin modestly reduced this ratio. Molecular studies showed that the spectrum of beta-catenin mutations was markedly different in chlorophyllin-promoted colon tumors--many of the mutations led to direct substitutions of critical Ser/Thr residues within the glycogen synthase kinase-3beta (GSK-3beta) region, whereas in all other groups, including DMH and IQ controls, the mutations typically affected amino acids adjacent to Ser(33). Substitution of critical Ser/Thr residues caused beta-catenin and c-Jun proteins to be markedly over-expressed compared with tumors in which the mutations substituted amino acid residues flanking these critical Ser/Thr sites. In a separate study, rats were exposed to IQ or azoxymethane (AOM), a metabolite of DMH, and they were treated post-initiation with chlorophyllin, chlorophyll, copper, or phytol in the diet. Natural chlorophyll (0.08%) suppressed AOM- and IQ-induced aberrant crypt foci (ACF), whereas chlorophyllin had no effect and copper promoted the number of small ACF induced by IQ. The results suggest that further investigation of the dose-response for suppression versus promotion by chlorophyll and chlorophyllin is warranted, including studies of the beta-catenin/Tcf signaling pathway and its influence on cell proliferation and apoptosis in the colonic crypt.


Journal of Carcinogenesis | 2006

Post-initiation chlorophyllin exposure does not modulate aflatoxin-induced foci in the liver and colon of rats

Gayle A. Orner; Bill D. Roebuck; Roderick H. Dashwood; George S. Bailey

Chlorophyllin (CHL) is a promising chemopreventive agent believed to block cancer primarily by inhibiting carcinogen uptake through the formation of molecular complexes with the carcinogens. However, recent studies suggest that CHL may have additional biological effects particularly when given after the period of carcinogen treatment. This study examines the post-initiation effects of CHL towards aflatoxin B1 (AFB1)-induced preneoplastic foci of the liver and colon. The single concentration of CHL tested in this study (0.1% in the drinking water) had no significant effects on AFB1-induced foci of the liver and colons of rats.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2001

Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay

Gilberto Santana-Rios; Gayle A. Orner; Adams Amantana; Cynthia Provost; Shiau-Yin Wu; Roderick H. Dashwood

Collaboration


Dive into the Gayle A. Orner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge