Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ge-Fei Hao is active.

Publication


Featured researches published by Ge-Fei Hao.


Journal of the American Chemical Society | 2012

Computational Discovery of Picomolar Qo Site Inhibitors of Cytochrome bc1 Complex

Ge-Fei Hao; Fu Wang; Hui Li; Xiao-Lei Zhu; Wen-Chao Yang; Li-shar Huang; Jia-Wei Wu; Edward A. Berry; Guang-Fu Yang

A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20 507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 Å resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.


Drug Discovery Today | 2012

Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem

Ge-Fei Hao; Guang-Fu Yang; Chang-Guo Zhan

Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.


Journal of Physical Chemistry B | 2010

Computational Mutation Scanning and Drug Resistance Mechanisms of HIV-1 Protease Inhibitors

Ge-Fei Hao; Guang-Fu Yang; Chang-Guo Zhan

The drug resistance of various clinically available HIV-1 protease inhibitors has been studied using a new computational protocol, that is, computational mutation scanning (CMS), leading to valuable insights into the resistance mechanisms and structure-resistance correction of the HIV-1 protease inhibitors associated with a variety of active site and nonactive site mutations. By using the CMS method, the calculated mutation-caused shifts of the binding free energies linearly correlate very well with those derived from the corresponding experimental data, suggesting that the CMS protocol may be used as a generalized approach to predict drug resistance associated with amino acid mutations. Because it is essentially important for understanding the structure-resistance correlation and for structure-based drug design to develop an effective computational protocol for drug resistance prediction, the reasonable and computationally efficient CMS protocol for drug resistance prediction should be valuable for future structure-based design and discovery of antiresistance drugs in various therapeutic areas.


Chimia | 2011

Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery.

Ge-Fei Hao; Yang Zuo; Sheng-Gang Yang; Guang-Fu Yang

As the last common enzyme in the biosynthetic pathway leading to heme and chlorophyll, protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is an ideal target for herbicide development. Currently, about 30 PPO inhibitors have been developed as agricultural herbicides. PPO inhibitors have displayed environmentally benign, but advantageous characteristics, including low toxicity, low effective concentration, broad herbicidal spectrum (active against both monocotyledon and dicotyledon weeds), quick onset of action, and long lasting effect. Over the last several years, great achievements have been made in revealing the structural biology of PPO. Five PPO crystal structures, four isolated in enzyme-inhibitor complexes and one in the native form, have been determined, including those from Nicotiana tabacum, Myxococcus Xanthus, Bacillus subtilis, and human. Although PPO inhibitors have been developed for over forty years, we continue to uncover exciting future prospects for novel PPO-inhibiting herbicides. In this review, we have summarized the structures of PPOs from plants, human, and bacteria; the interactions between PPOs and inhibitors; the quantitative structure-activity relationships of PPO inhibitors; and the molecular design of new PPO inhibitors.


Bioorganic & Medicinal Chemistry | 2012

Quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-ones as human protoporphyrinogen oxidase inhibitors.

Yang Zuo; Sheng-Gang Yang; Li-Li Jiang; Ge-Fei Hao; Zhi-Fang Wang; Qiong-You Wu; Zhen Xi; Guang-Fu Yang

Protoporphyrinogen oxidase (Protox, EC 1.3.3.4) has attracted great interest during the last decades due to its unique biochemical characteristics and biomedical significance. As a continuation of our research work on the development of new PPO inhibitors, 23 new 1,3,4-thiadiazol-2(3H)-ones bearing benzothiazole substructure were designed and synthesized. The in vitro assay indicated that the newly synthesized compounds 1a-w displayed good inhibition activity against human PPO (hPPO) with K(i) values ranging from 0.04μM to 245μM. To the knowledge, compound 1a, O-ethyl S-(5-(5-(tert-butyl)-2-oxo-1,3,4-thiadiazol-3(2H)-yl)-6-fluorobenzothiazol-2-yl)carbonothioate, with the K(i) value of 40nM, is so far known as the most potent inhibitor against hPPO. Based on the molecular docking and modified molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations, the quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-one derivatives were established with excellent correlation relationships (r(2)=0.81) between the calculated and experimental binding free energies. Some important insights were also concluded for guiding the future rational design of new hPPO inhibitors with improved potency.


PLOS ONE | 2010

The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations

Ge-Fei Hao; Guang-Fu Yang

It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a “molecular glue”. Besides, Phe351 acts as a “fastener” to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues.


Journal of Physical Chemistry B | 2009

Understanding the mechanism of drug resistance due to a codon deletion in protoporphyrinogen oxidase through computational modeling.

Ge-Fei Hao; Xiao-Lei Zhu; Feng-Qin Ji; Li Zhang; Guang-Fu Yang; Chang-Guo Zhan

Protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is the last common enzyme for the enzymatic transformation of protoporphyrinogen-IX to protoporphyrin-IX, which is the key common intermediate leading to heme and chlorophyll. Hence, PPO has been identified as one of the most importance action targets for the treatment of some important diseases including cancer and variegated porphyria (VP). In the agricultural field, PPO inhibitors have been used as herbicides for many years. Recently, a unique drug resistance was found to be associated with a nonactive site residue (Gly210) deletion rather than substitution in A. tuberculatus PPO. In the present study, extensive computational simulations, including homology modeling, molecular dynamics (MD) simulations, and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations, have been carried out to uncover the detailed molecular mechanism of drug resistance associated with Gly210 deletion. Although Gly210 in the wild-type A. tuberculatus PPO has no direct interaction with the inhibitors, all the computational models and energetic results indicated that Gly210 deletion has great effects on the hydrogen-bonding network and the conformational change of the binding pocket. An interchain hydrogen bond between Gly210 with Ser424, playing an important role in stabilizing the local conformation of the wild-type enzyme, disappeared after Gly210 deletion. As a result, the mutant-type PPO has a lower affinity than the wild-type enzyme, which accounts for the molecular mechanism of drug resistance. The structural and mechanistic insights obtained from the present study provide a new starting point for future rational design of novel PPO inhibitors to overcome drug resistance associated with Gly210 deletion.


Journal of Agricultural and Food Chemistry | 2015

Synthesis and Herbicidal Activity of Triketone–Quinoline Hybrids as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors

Da-Wei Wang; Hong-Yan Lin; Run-Jie Cao; Tao Chen; Feng-Xu Wu; Ge-Fei Hao; Qiong Chen; Wen-Chao Yang; Guang-Fu Yang

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most important targets for herbicide discovery. In the search for new HPPD inhibitors with novel scaffolds, triketone-quinoline hybrids were designed and subsequently optimized on the basis of the structure-activity relationship (SAR) studies. Most of the synthesized compounds displayed potent inhibition of Arabidopsis thaliana HPPD (AtHPPD), and some of them exhibited broad-spectrum and promising herbicidal activity at the rate of 150 g ai/ha by postemergence application. Most promisingly, compound III-l, 3-hydroxy-2-(2-methoxy-7-(methylthio)quinoline-3-carbonyl)cyclohex-2-enone (Ki = 0.009 μM, AtHPPD), had broader spectrum of weed control than mesotrione. Furthermore, compound III-l was much safer to maize at the rate of 150 g ai/ha than mesotrione, demonstrating its great potential as herbicide for weed control in maize fields. Therefore, triketone-quinoline hybrids may serve as new lead structures for novel herbicide discovery.


Journal of Agricultural and Food Chemistry | 2014

Synthesis and herbicidal evaluation of triketone-containing quinazoline-2,4-diones.

Da-Wei Wang; Hong-Yan Lin; Run-Jie Cao; Sheng-Gang Yang; Qiong Chen; Ge-Fei Hao; Wen-Chao Yang; Guang-Fu Yang

Exploring novel 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors is one of the most promising research directions in herbicide discovery. To discover new triketone herbicides with broad-spectrum weed control as well as excellent crop selectivity, a series of (total 52) novel triketone-containing quinazoline-2,4-dione derivatives were synthesized and further bioevaluated. The greenhouse testing indicated that many of the newly synthesized compounds showed better or excellent herbicidal activity against broadleaf and monocotyledonous weeds at the dosages of 37.5-150 g of active ingredient (ai)/ha. The structure and activity relationship in this study indicated that the triketone-containing quinazoline-2,4-dione motif has possessed great impact on herbicide activity and may be used for further optimization. Among the new compounds, III-b and VI-a-VI-d displayed a broader spectrum of weed control than mesotrione. In addition, the compound III-b also demonstrated comparatively superior crop selectivity to mesotrione, thus possessing great potential for weed control in the field.


Pest Management Science | 2015

Design, synthesis and herbicidal activity of novel quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors

Da-Wei Wang; Hong-Yan Lin; Run-Jie Cao; Ze-Zhong Ming; Tao Chen; Ge-Fei Hao; Wen-Chao Yang; Guang-Fu Yang

BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD) (EC 1.13.11.27) has been identified as one of the most promising target sites for herbicide discovery. To discover novel HPPD inhibitors with high herbicidal activity and improved crop selectivity, a series of novel triketone-containing quinazoline-2,4-dione derivatives possessing a variety of substituents at the N-1 position of the quinazoline-2,4-dione ring were designed and synthesised. RESULTS The results of in vitro tests and greenhouse experiments indicated that some analogues showed good HPPD inhibitory activity, with promising broad-spectrum herbicidal activity at a rate of 150 g AI ha(-1) . Most surprisingly, compound 11 h, 1-ethyl-6-(2-hydroxy-6-oxocyclohex-1-enecarbonyl)-3-(o-tolyl)quinazoline-2,4(1H,3H)-dione, showed the highest HPPD inhibition activity, with a Ki value of 0.005 μM, about 2 times more potent than mesotrione (Ki  = 0.013 μM). Further greenhouse experiments indicated that compounds 11d and 11 h displayed strong and broad-spectrum post-emergent herbicidal activity even at a dosage as low as 37.5 g AI ha(-1) , which was superior to mesotrione. More importantly, compounds 11d and 11 h were safe for maize at a rate of 150 g AI ha(-1) , and compound 11d was safe for wheat as well. CONCLUSION The present work indicated that the triketone-containing quinazoline-2,4-dione motif could be a potential lead structure for further development of novel herbicides.

Collaboration


Dive into the Ge-Fei Hao's collaboration.

Top Co-Authors

Avatar

Guang-Fu Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Sheng-Gang Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wen-Chao Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jing-Fang Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Run-Jie Cao

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Hong-Yan Lin

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Lei Zhu

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Da-Wei Wang

Central China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge