Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheng-Gang Yang is active.

Publication


Featured researches published by Sheng-Gang Yang.


Bioorganic & Medicinal Chemistry | 2014

Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase

Qi Sun; Da-Yong Peng; Sheng-Gang Yang; Xiao-Lei Zhu; Wen-Chao Yang; Guang-Fu Yang

Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimers disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.


Chimia | 2011

Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery.

Ge-Fei Hao; Yang Zuo; Sheng-Gang Yang; Guang-Fu Yang

As the last common enzyme in the biosynthetic pathway leading to heme and chlorophyll, protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is an ideal target for herbicide development. Currently, about 30 PPO inhibitors have been developed as agricultural herbicides. PPO inhibitors have displayed environmentally benign, but advantageous characteristics, including low toxicity, low effective concentration, broad herbicidal spectrum (active against both monocotyledon and dicotyledon weeds), quick onset of action, and long lasting effect. Over the last several years, great achievements have been made in revealing the structural biology of PPO. Five PPO crystal structures, four isolated in enzyme-inhibitor complexes and one in the native form, have been determined, including those from Nicotiana tabacum, Myxococcus Xanthus, Bacillus subtilis, and human. Although PPO inhibitors have been developed for over forty years, we continue to uncover exciting future prospects for novel PPO-inhibiting herbicides. In this review, we have summarized the structures of PPOs from plants, human, and bacteria; the interactions between PPOs and inhibitors; the quantitative structure-activity relationships of PPO inhibitors; and the molecular design of new PPO inhibitors.


Bioorganic & Medicinal Chemistry | 2012

Quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-ones as human protoporphyrinogen oxidase inhibitors.

Yang Zuo; Sheng-Gang Yang; Li-Li Jiang; Ge-Fei Hao; Zhi-Fang Wang; Qiong-You Wu; Zhen Xi; Guang-Fu Yang

Protoporphyrinogen oxidase (Protox, EC 1.3.3.4) has attracted great interest during the last decades due to its unique biochemical characteristics and biomedical significance. As a continuation of our research work on the development of new PPO inhibitors, 23 new 1,3,4-thiadiazol-2(3H)-ones bearing benzothiazole substructure were designed and synthesized. The in vitro assay indicated that the newly synthesized compounds 1a-w displayed good inhibition activity against human PPO (hPPO) with K(i) values ranging from 0.04μM to 245μM. To the knowledge, compound 1a, O-ethyl S-(5-(5-(tert-butyl)-2-oxo-1,3,4-thiadiazol-3(2H)-yl)-6-fluorobenzothiazol-2-yl)carbonothioate, with the K(i) value of 40nM, is so far known as the most potent inhibitor against hPPO. Based on the molecular docking and modified molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations, the quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-one derivatives were established with excellent correlation relationships (r(2)=0.81) between the calculated and experimental binding free energies. Some important insights were also concluded for guiding the future rational design of new hPPO inhibitors with improved potency.


Journal of Agricultural and Food Chemistry | 2014

Synthesis and herbicidal evaluation of triketone-containing quinazoline-2,4-diones.

Da-Wei Wang; Hong-Yan Lin; Run-Jie Cao; Sheng-Gang Yang; Qiong Chen; Ge-Fei Hao; Wen-Chao Yang; Guang-Fu Yang

Exploring novel 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors is one of the most promising research directions in herbicide discovery. To discover new triketone herbicides with broad-spectrum weed control as well as excellent crop selectivity, a series of (total 52) novel triketone-containing quinazoline-2,4-dione derivatives were synthesized and further bioevaluated. The greenhouse testing indicated that many of the newly synthesized compounds showed better or excellent herbicidal activity against broadleaf and monocotyledonous weeds at the dosages of 37.5-150 g of active ingredient (ai)/ha. The structure and activity relationship in this study indicated that the triketone-containing quinazoline-2,4-dione motif has possessed great impact on herbicide activity and may be used for further optimization. Among the new compounds, III-b and VI-a-VI-d displayed a broader spectrum of weed control than mesotrione. In addition, the compound III-b also demonstrated comparatively superior crop selectivity to mesotrione, thus possessing great potential for weed control in the field.


Journal of Molecular Modeling | 2011

Computational simulations of structural role of the active-site W374C mutation of acetyl-coenzyme-A carboxylase: Multi-drug resistance mechanism

Xiao-Lei Zhu; Wen-Chao Yang; Ning-Xi Yu; Sheng-Gang Yang; Guang-Fu Yang

Herbicides targeting grass plastidic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) are selectively effective against graminicides. The intensive worldwide use of this herbicide family has selected for resistance genes in a number of grass weed species. Recently, the active-site W374C mutation was found to confer multi-drug resistance toward haloxyfop (HF), fenoxaprop (FR), Diclofop (DF), and clodinafop (CF) in A. myosuroides. In order to uncover the resistance mechanism due to W374C mutation, the binding of above-mentioned four herbicides to both wild-type and the mutant-type ACCase was investigated in the current work by molecular docking and molecular dynamics (MD) simulations. The binding free energies were calculated by molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) method. The calculated binding free energy values for four herbicides were qualitatively consistent with the experimental order of IC50 values. All the computational model and energetic results indicated that the W374C mutation has great effects on the conformational change of the binding pocket and the ligand-protein interactions. The most significant conformational change was found to be associated with the aromatic amino acid residues, such as Phe377, Tyr161′ and Trp346. As a result, the π-π interaction between the ligand and the residue of Phe377 and Tyr161′, which make important contributions to the binding affinity, was decreased after mutation and the binding affinity for the inhibitors to the mutant-type ACCase was less than that to the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural role and mechanistic insights obtained from computational simulations will provide a new starting point for the rational design of novel inhibitors to overcome drug resistance associated with W374C mutation.


New Journal of Chemistry | 2014

Hexahydrophthalimide–benzothiazole hybrids as a new class of protoporphyrinogen oxidase inhibitors: synthesis, structure–activity relationship, and DFT calculations

Qiong-You Wu; Li-Li Jiang; Sheng-Gang Yang; Yang Zuo; Zhi-Fang Wang; Zhen Xi; Guang-Fu Yang

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) has attracted continuous interest during the last few decades not only because of its unique biochemical characteristics but also because of its biomedical significance. As a continuation of our research work on the development of new PPO inhibitors, N-(benzothiazol-5-yl)-hexahydro-2H-isoindole-1,3-dithione (1a–j) and N-(benzothiazol-5-yl)-octahydro-3-thioxoisoindol-1-one derivatives (2a–i) were designed and synthesized. These newly prepared compounds were characterized by elemental analyses, 1H NMR and ESI-MS spectroscopy. The in vitro assay indicated that these compounds displayed good inhibition activity against human PPO (hPPO) with Ki values ranging from 0.38 μM to 6.83 μM. Notably, most of the monothionated products (1a–j) displayed a higher or comparable PPO-inhibition activity compared with the commercial control sulfentrazone. The comparison of the dihedral angles of the representative compound with that of acifluorfen (ACF) complexed with hPPO clearly indicated that the dihedral angle between the thionyl amide or carbonyl amide ring and the benzothiazole ring was closely related to the variation of the PPO inhibition activity of different types of inhibitors.


PLOS ONE | 2013

Computational and experimental insights into the mechanism of substrate recognition and feedback inhibition of protoporphyrinogen oxidase

Ge-Fei Hao; Ying Tan; Sheng-Gang Yang; Zhi-Fang Wang; Chang-Guo Zhan; Zhen Xi; Guang-Fu Yang

Protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) is an essential enzyme catalyzing the last common step in the pathway leading to heme and chlorophyll biosynthesis. Great interest in PPO inhibitors arises from both its significance to agriculture and medicine. However, the discovery of PPO inhibitors with ultrahigh potency and selectivity is hampered due to lack of structural and mechanistic understanding about the substrate recognition, which remains a longstanding question central in porphyrin biology. To understand the mechanism, a novel binding model of protogen (protoporphyrinogen IX, the substrate) was developed through extensive computational simulations. Subsequently, amino acid residues that are critical for protogen binding identified by computational simulations were substituted by mutagenesis. Kinetic analyses of these mutants indicated that these residues were critical for protogen binding. In addition, the calculated free energies of protogen binding with these mutants correlated well with the experimental data, indicating the reasonability of the binding model. On the basis of this novel model, the fundamental mechanism of substrate recognition was investigated by performing potential of mean force (PMF) calculations, which provided an atomic level description of conformational changes and pathway intermediates. The free energy profile revealed a feedback inhibition mechanism of proto (protoporphyrin IX, the product), which was also in agreement with experimental evidence. The novel mechanistic insights obtained from this study present a new starting point for future rational design of more efficient PPO inhibitors based on the product-bound PPO structure.


Scientific Reports | 2015

Rational Design of Highly Potent and Slow-Binding Cytochrome bc1 Inhibitor as Fungicide by Computational Substitution Optimization

Ge-Fei Hao; Sheng-Gang Yang; Wei Huang; Le Wang; Yan-Qing Shen; Wen-Long Tu; Hui Li; Li-shar Huang; Jia-Wei Wu; Edward A. Berry; Guang-Fu Yang

Hit to lead (H2L) optimization is a key step for drug and agrochemical discovery. A critical challenge for H2L optimization is the low efficiency due to the lack of predictive method with high accuracy. We described a new computational method called Computational Substitution Optimization (CSO) that has allowed us to rapidly identify compounds with cytochrome bc1 complex inhibitory activity in the nanomolar and subnanomolar range. The comprehensively optimized candidate has proved to be a slow binding inhibitor of bc1 complex, ~73-fold more potent (Ki = 4.1 nM) than the best commercial fungicide azoxystrobin (AZ; Ki = 297.6 nM) and shows excellent in vivo fungicidal activity against downy mildew and powdery mildew disease. The excellent correlation between experimental and calculated binding free-energy shifts together with further crystallographic analysis confirmed the prediction accuracy of CSO method. To the best of our knowledge, CSO is a new computational approach to substitution-scanning mutagenesis of ligand and could be used as a general strategy of H2L optimisation in drug and agrochemical design.


Current Pharmaceutical Design | 2014

Structure-based Design of Conformationally Flexible Reverse Transcriptase Inhibitors to Combat Resistant HIV

Ge-Fei Hao; Sheng-Gang Yang; Guang-Fu Yang

Reverse transcriptase (RT) is one of the most important targets for HIV drug discovery. However, the emergence of resistant mutants has become one of the biggest challenges in HIV-1 RT drug discovery/development and attracted great research interests worldwide. It is particularly important to develop novel anti-HIV-1 RT agents that have improved potency and efficacy against the wild-type (WT) RT, but also target resistant RT forms. Previous crystal complex structures of HIV-1 RT revealed the interaction mechanism between the enzyme and inhibitors, which promoted the exploitation of inhibitor that had sufficient conformational flexibility to combat resistance. Hence, the potential flexibility of a drug should be part of the strategy considered in the early stages of designing drugs that are intended to be broadly effective against mutated targets associated with drug resistance. This review provides an overview of the state of the art in this field, including design strategies and challenges for medicinal chemists.


Journal of Computational Chemistry | 2013

Computational gibberellin‐binding channel discovery unraveling the unexpected perception mechanism of hormone signal by gibberellin receptor

Ge-Fei Hao; Sheng-Gang Yang; Guang-Fu Yang; Chang-Guo Zhan

Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA‐binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008, 456, 459] involving two conformational states (“OPEN” and “CLOSED”) of GID1. According to the new perception mechanism, GA acts as a “conformational stabilizer,” rather than the previously speculated “allosteric inducer,” to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism‐based rational design of novel, potent growth regulators that target crops and ornamental plants.

Collaboration


Dive into the Sheng-Gang Yang's collaboration.

Top Co-Authors

Avatar

Guang-Fu Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ge-Fei Hao

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wen-Chao Yang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yang Zuo

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Yan Lin

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhi-Fang Wang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Da-Wei Wang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Li-Li Jiang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Qiong Chen

Central China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge