Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geert Persiau is active.

Publication


Featured researches published by Geert Persiau.


Molecular Systems Biology | 2010

Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.

Jelle Van Leene; Jens Hollunder; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Hilde Stals; Gert Van Isterdael; Aurine Verkest; Sandy Neirynck; Yelle Buffel; Stefanie De Bodt; Steven Maere; Kris Laukens; Anne Pharazyn; Paulo Cavalcanti Gomes Ferreira; Nubia Barbosa Eloy; Charlotte Renne; Christian Meyer; Jean-Denis Faure; Jens Steinbrenner; Jim Beynon; John C. Larkin; Yves Van de Peer; Pierre Hilson; Martin Kuiper; Lieven De Veylder; Harry Van Onckelen; Dirk Inzé; Erwin Witters; Geert De Jaeger

Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up‐ and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in‐depth biological interpretation demonstrated the hypothesis‐generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin‐dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant‐specific B‐type CDKs were discovered and the anaphase‐promoting complex was characterized and extended. Important conclusions were that mitotic A‐ and B‐type cyclins form complexes with the plant‐specific B‐type CDKs and not with CDKA;1, and that D‐type cyclins and S‐phase‐specific A‐type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.


Molecular & Cellular Proteomics | 2007

A Tandem Affinity Purification-based Technology Platform to Study the Cell Cycle Interactome in Arabidopsis thaliana

Jelle Van Leene; Hilde Stals; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Gert Van Isterdael; Annelies De Clercq; Eric Bonnet; Kris Laukens; Noor Remmerie; Kim Henderickx; Thomas De Vijlder; Azmi Abdelkrim; Anne Pharazyn; Harry Van Onckelen; Dirk Inzé; Erwin Witters; Geert De Jaeger

Defining protein complexes is critical to virtually all aspects of cell biology because many cellular processes are regulated by stable protein complexes, and their identification often provides insights into their function. We describe the development and application of a high throughput tandem affinity purification/mass spectrometry platform for cell suspension cultures to analyze cell cycle-related protein complexes in Arabidopsis thaliana. Elucidation of this protein-protein interaction network is essential to fully understand the functional differences between the highly redundant cyclin-dependent kinase/cyclin modules, which are generally accepted to play a central role in cell cycle control, in all eukaryotes. Cell suspension cultures were chosen because they provide an unlimited supply of protein extracts of actively dividing and undifferentiated cells, which is crucial for a systematic study of the cell cycle interactome in the absence of plant development. Here we report the mapping of a protein interaction network around six known core cell cycle proteins by an integrated approach comprising generic Gateway-based vectors with high cloning flexibility, the fast generation of transgenic suspension cultures, tandem affinity purification adapted for plant cells, matrix-assisted laser desorption ionization tandem mass spectrometry, data analysis, and functional assays. We identified 28 new molecular associations and confirmed 14 previously described interactions. This systemic approach provides new insights into the basic cell cycle control mechanisms and is generally applicable to other pathways in plants.


Journal of Biological Chemistry | 1997

Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants - Purification, characterization, cDNA cloning, and expression in yeast

Jens Østergaard; Geert Persiau; Mark W. Davey; Guy Bauw; Marc Van Montagu

l-Galactono-γ-lactone dehydrogenase (EC 1.3.2.3; GLDase), an enzyme that catalyzes the final step in the biosynthesis of l-ascorbic acid was purified 1693-fold from a mitochondrial extract of cauliflower (Brassica oleracea, var. botrytis) to apparent homogeneity with an overall yield of 1.1%. The purification procedure consisted of anion exchange, hydrophobic interaction, gel filtration, and fast protein liquid chromatography. The enzyme had a molecular mass of 56 kDa estimated by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis and showed a pH optimum for activity between pH 8.0 and 8.5, with an apparent K m of 3.3 mm forl-galactono-γ-lactone. Based on partial peptide sequence information, polymerase chain reaction fragments were isolated and used to screen a cauliflower cDNA library from which a cDNA encoding GLDase was isolated. The deduced mature GLDase contained 509 amino acid residues with a predicted molecular mass of 57,837 Da. Expression of the cDNA in yeast produced a biologically active protein displaying GLDase activity. Furthermore, we identified a substrate for the enzyme in cauliflower extract, which co-eluted withl-galactono-γ-lactone by high-performance liquid chromatography, suggesting that this compound is a naturally occurring precursor of l-ascorbic acid biosynthesis in vivo.


Cell | 2014

The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants

Astrid Gadeyne; Clara Sánchez-Rodríguez; Steffen Vanneste; Simone Di Rubbo; Henrik Zauber; Kevin Vanneste; Jelle Van Leene; Nancy De Winne; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Bernard Cannoot; Leen Vercruysse; Jonathan R. Mayers; Maciek Adamowski; Urszula Kania; Matthias Ehrlich; Alois Schweighofer; Tijs Ketelaar; Steven Maere; Sebastian Y. Bednarek; Jiří Friml; Kris Gevaert; Erwin Witters; Eugenia Russinova; Staffan Persson; Geert De Jaeger; Daniël Van Damme

Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.


The Plant Cell | 2011

Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of Arabidopsis E2Fa by Lateral Organ Boundary Proteins

Barbara Berckmans; Valya Vassileva; Stephan Schmid; Sara Maes; Boris Parizot; Satoshi Naramoto; Zoltán Magyar; Claire Lessa Alvim Kamei; Csaba Koncz; László Bögre; Geert Persiau; Geert De Jaeger; Jiří Friml; Rüdiger Simon; Tom Beeckman; Lieven De Veylder

Auxin controls morphogenesis through local activation of cell division, but how auxin signaling controls the core cell cycle machinery in a developmental context is largely unknown. Here, the plant-specific LATERAL ORGAN BOUNDARY transcription factors are revealed to regulate cell cycle entry in response to auxin through transcriptional activation of the retinoblastoma-E2F pathway. Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole–positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.


The Plant Cell | 2013

The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis.

Simone Di Rubbo; Niloufer G. Irani; Soo Youn Kim; Zheng-Yi Xu; Astrid Gadeyne; Wim Dejonghe; Isabelle Vanhoutte; Geert Persiau; Dominique Eeckhout; Sibu Simon; Kyungyoung Song; Jürgen Kleine-Vehn; Jiří Friml; Geert De Jaeger; Daniël Van Damme; Inhwan Hwang; Eugenia Russinova

In mammals, clathrin-mediated endocytosis (CME) depends on the heterotetrameric ADAPTOR PROTEIN COMPLEX-2 (AP-2). Our work identifies the components of the Arabidopsis thaliana AP-2 and shows that the machinery of CME in plants is evolutionarily conserved. Our data reveal that AP-2 mediates the endocytosis of the brassinosteroid receptor BRI1. Clathrin-mediated endocytosis (CME) regulates many aspects of plant development, including hormone signaling and responses to environmental stresses. Despite the importance of this process, the machinery that regulates CME in plants is largely unknown. In mammals, the heterotetrameric ADAPTOR PROTEIN COMPLEX-2 (AP-2) is required for the formation of clathrin-coated vesicles at the plasma membrane (PM). Although the existence of AP-2 has been predicted in Arabidopsis thaliana, the biochemistry and functionality of the complex is still uncharacterized. Here, we identified all the subunits of the Arabidopsis AP-2 by tandem affinity purification and found that one of the large AP-2 subunits, AP2A1, localized at the PM and interacted with clathrin. Furthermore, endocytosis of the leucine-rich repeat receptor kinase, BRASSINOSTEROID INSENSITIVE1 (BRI1), was shown to depend on AP-2. Knockdown of the two Arabidopsis AP2A genes or overexpression of a dominant-negative version of the medium AP-2 subunit, AP2M, impaired BRI1 endocytosis and enhanced the brassinosteroid signaling. Our data reveal that the CME machinery in Arabidopsis is evolutionarily conserved and that AP-2 functions in receptor-mediated endocytosis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Sulfenome mining in Arabidopsis thaliana

Cezary Waszczak; Salma Akter; Dominique Eeckhout; Geert Persiau; Khadija Wahni; Nandita Bodra; Inge Van Molle; Barbara De Smet; Didier Vertommen; Kris Gevaert; Geert De Jaeger; Marc Van Montagu; Joris Messens; Frank Van Breusegem

Significance When oxygen gets incompletely reduced, reactive oxygen species (ROS) are generated. These ROS molecules can harm the building blocks of the cell but are also important signaling molecules. Until now, the ROS language of the cell has not been understood and a clear view is needed on how the cell differentiates metabolic ROS noise from ROS that allows signaling, regulation, and protection. To address this question, we focused on Arabidopsis thaliana and identified the proteins that react with hydrogen peroxide on the thiol of the amino acid cysteine, which after reaction forms a sulfenic acid. The characterization of the plant sulfenome improves the understanding of important ROS signaling pathways. Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage.


Nature Communications | 2013

A protein phosphatase 2A complex spatially controls plant cell division

Lara Spinner; Astrid Gadeyne; Katia Belcram; Magali Goussot; Michaël Moison; Yann Duroc; Dominique Eeckhout; Nancy De Winne; Estelle Schaefer; Eveline Van De Slijke; Geert Persiau; Erwin Witters; Kris Gevaert; Geert De Jaeger; David Bouchez; Daniël Van Damme; Martine Pastuglia

In the absence of cell migration, the orientation of cell divisions is crucial for body plan determination in plants. The position of the division plane in plant cells is set up premitotically via a transient cytoskeletal array, the preprophase band, which precisely delineates the cortical plane of division. Here we describe a protein complex that targets protein phosphatase 2A activity to microtubules, regulating the transition from the interphase to the premitotic microtubule array. This complex, which comprises TONNEAU1 and a PP2A heterotrimeric holoenzyme with FASS as regulatory subunit, is recruited to the cytoskeleton via the TONNEAU1-recruiting motif family of proteins. Despite the acentrosomal nature of plant cells, all members of this complex share similarity with animal centrosomal proteins involved in ciliary and centriolar/centrosomal functions, revealing an evolutionary link between the cortical cytoskeleton of plant cells and microtubule organizers in other eukaryotes.


Nature Protocols | 2015

An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes

Jelle Van Leene; Dominique Eeckhout; Bernard Cannoot; Nancy De Winne; Geert Persiau; Eveline Van De Slijke; Leen Vercruysse; Maarten Dedecker; Aurine Verkest; Klaas Vandepoele; Lennart Martens; Erwin Witters; Kris Gevaert; Geert De Jaeger

Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most advanced methods to characterize protein complexes in plants, giving a comprehensive view on the protein-protein interactions (PPIs) of a certain protein of interest (bait). The bait protein is fused to a double affinity tag, which consists of a protein G tag and a streptavidin-binding peptide separated by a very specific protease cleavage site, allowing highly specific protein complex isolation under near-physiological conditions. Implementation of this optimized TAP tag, combined with ultrasensitive MS, means that these experiments can be performed on small amounts (25 mg of total protein) of protein extracts from Arabidopsis cell suspension cultures. It is also possible to use this approach to isolate low abundant protein complexes from Arabidopsis seedlings, thus opening perspectives for the exploration of protein complexes in a plant developmental context. Next to protocols for efficient biomass generation of seedlings (∼7.5 months), we provide detailed protocols for TAP (1 d), and for sample preparation and liquid chromatography-tandem MS (LC-MS/MS; ∼5 d), either from Arabidopsis seedlings or from cell cultures. For the identification of specific co-purifying proteins, we use an extended protein database and filter against a list of nonspecific proteins on the basis of the occurrence of a co-purified protein among 543 TAP experiments. The value of the provided protocols is illustrated through numerous applications described in recent literature.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Constitutively active UVR8 photoreceptor variant in Arabidopsis

Marc Heijde; Melanie Binkert; Ruohe Yin; Florence Ares-Orpel; Luca Rizzini; Eveline Van De Slijke; Geert Persiau; Jonah Nolf; Kris Gevaert; Geert De Jaeger; Roman Ulm

Significance Sunlight is an essential environmental factor for photosynthetic plants and ultimately for life on Earth, which is sustained through plants as fundamental source of food. However, plants have a love/hate relationship with sunlight and must be protected from potentially harmful UV-B radiation. The UV-B photoreceptor UVR8 is of great importance in mounting UV-protective responses and thus for survival in sunlight. Based on our understanding of UVR8 signaling, we have engineered a UVR8 variant that is constitutively active in transgenic plants. The generation of a constitutively active photoreceptor variant is an important step in understanding the molecular signaling mechanism and may hold opportunities for crop improvement. Arabidopsis thaliana UV RESISTANCE LOCUS 8 (UVR8) is a UV-B photoreceptor that initiates photomorphogenic responses underlying acclimation and UV-B tolerance in plants. UVR8 is a homodimer in its ground state, and UV-B exposure results in its instantaneous monomerization followed by interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), a major factor in UV-B signaling. UV-B photoreception by UVR8 is based on intrinsic tryptophan aromatic amino acid residues, with tryptophan-285 as the main chromophore. We generated transgenic plants expressing UVR8 with a single amino acid change of tryptophan-285 to alanine. UVR8W285A appears monomeric and shows UV-B–independent interaction with COP1. Phenotypically, the plants expressing UVR8W285A exhibit constitutive photomorphogenesis associated with constitutive activation of target genes, elevated levels of anthocyanins, and enhanced, acclimation-independent UV-B tolerance. Moreover, we have identified COP1, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 (RUP1 and RUP2), and the SUPPRESSOR OF PHYA-105 (SPA) family as proteins copurifying with UVR8W285A. Whereas COP1, RUP1, and RUP2 are known to directly interact with UVR8, we show that SPA1 interacts with UVR8 indirectly through COP1. We conclude that UVR8W285A is a constitutively active UVR8 photoreceptor variant in Arabidopsis, as is consistent with the crucial importance of monomer formation and COP1 binding for UVR8 activity.

Collaboration


Dive into the Geert Persiau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelle Van Leene

Flanders Institute for Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge