Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gemma C. Langridge is active.

Publication


Featured researches published by Gemma C. Langridge.


Genome Research | 2009

Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants

Gemma C. Langridge; Minh-Duy Phan; Daniel J. Turner; Timothy T. Perkins; Leopold Parts; Jana K. Haase; Ian G. Charles; Duncan J. Maskell; Sarah E. Peters; Gordon Dougan; John Wain; Julian Parkhill; A. Keith Turner

Very high-throughput sequencing technologies need to be matched by high-throughput functional studies if we are to make full use of the current explosion in genome sequences. We have generated a very large bacterial mutant pool, consisting of an estimated 1.1 million transposon mutants and we have used genomic DNA from this mutant pool, and Illumina nucleotide sequencing to prime from the transposon and sequence into the adjacent target DNA. With this method, which we have called TraDIS (transposon directed insertion-site sequencing), we have been able to map 370,000 unique transposon insertion sites to the Salmonella enterica serovar Typhi chromosome. The unprecedented density and resolution of mapped insertion sites, an average of one every 13 base pairs, has allowed us to assay simultaneously every gene in the genome for essentiality and generate a genome-wide list of candidate essential genes. In addition, the semiquantitative nature of the assay allowed us to identify genes that are advantageous and those that are disadvantageous for growth under standard laboratory conditions. Comparison of the mutant pool following growth in the presence or absence of ox bile enabled every gene to be assayed for its contribution toward bile tolerance, a trait required of any enteric bacterium and for carriage of S. Typhi in the gall bladder. This screen validated our hypothesis that we can simultaneously assay every gene in the genome to identify niche-specific essential genes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium

Carsten Kröger; Shane C. Dillon; Andrew D. S. Cameron; Kai Papenfort; Sathesh K. Sivasankaran; Karsten Hokamp; Yanjie Chao; Alexandra Sittka; Magali Hébrard; Kristian Händler; Aoife Colgan; Pimlapas Leekitcharoenphon; Gemma C. Langridge; Amanda J. Lohan; Brendan J. Loftus; Sacha Lucchini; David W. Ussery; Charles J. Dorman; Nicholas R. Thomson; Jörg Vogel; Jay C. D. Hinton

More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNA-sequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing identified 1,873 TSSs on the chromosome of S. Typhimurium SL1344 and 13% of these TSSs initiated antisense transcripts. Unique findings include the TSSs of the virulence regulators phoP, slyA, and invF. Chromatin immunoprecipitation revealed that RNA polymerase was bound to 70% of the TSSs, and two-thirds of these TSSs were associated with σ70 (including phoP, slyA, and invF) from which we identified the −10 and −35 motifs of σ70-dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium expresses 140 small regulatory RNAs (sRNAs) at early stationary phase, including 60 newly identified sRNAs. Almost half of the experimentally verified sRNAs were found to be unique to the Salmonella genus, and <20% were found throughout the Enterobacteriaceae. This description of the transcriptional map of SL1344 advances our understanding of S. Typhimurium, arguably the most important bacterial infection model.


BMC Genomics | 2009

Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi

Kathryn E. Holt; Nicholas R. Thomson; John Wain; Gemma C. Langridge; Rumina Hasan; Zulfiqar A. Bhutta; Michael A. Quail; Halina Norbertczak; Danielle Walker; Mark Simmonds; Brian R. White; Nathalie Bason; Karen Mungall; Gordon Dougan; Julian Parkhill

BackgroundOf the > 2000 serovars of Salmonella enterica subspecies I, most cause self-limiting gastrointestinal disease in a wide range of mammalian hosts. However, S. enterica serovars Typhi and Paratyphi A are restricted to the human host and cause the similar systemic diseases typhoid and paratyphoid fever. Genome sequence similarity between Paratyphi A and Typhi has been attributed to convergent evolution via relatively recent recombination of a quarter of their genomes. The accumulation of pseudogenes is a key feature of these and other host-adapted pathogens, and overlapping pseudogene complements are evident in Paratyphi A and Typhi.ResultsWe report the 4.5 Mbp genome of a clinical isolate of Paratyphi A, strain AKU_12601, completely sequenced using capillary techniques and subsequently checked using Illumina/Solexa resequencing. Comparison with the published genome of Paratyphi A ATCC9150 revealed the two are collinear and highly similar, with 188 single nucleotide polymorphisms and 39 insertions/deletions. A comparative analysis of pseudogene complements of these and two finished Typhi genomes (CT18, Ty2) identified several pseudogenes that had been overlooked in prior genome annotations of one or both serovars, and identified 66 pseudogenes shared between serovars. By determining whether each shared and serovar-specific pseudogene had been recombined between Paratyphi A and Typhi, we found evidence that most pseudogenes have accumulated after the recombination between serovars. We also divided pseudogenes into relative-time groups: ancestral pseudogenes inherited from a common ancestor, pseudogenes recombined between serovars which likely arose between initial divergence and later recombination, serovar-specific pseudogenes arising after recombination but prior to the last evolutionary bottlenecks in each population, and more recent strain-specific pseudogenes.ConclusionRecombination and pseudogene-formation have been important mechanisms of genetic convergence between Paratyphi A and Typhi, with most pseudogenes arising independently after extensive recombination between the serovars. The recombination events, along with divergence of and within each serovar, provide a relative time scale for pseudogene-forming mutations, affording rare insights into the progression of functional gene loss associated with host adaptation in Salmonella.


PLOS Genetics | 2013

Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals

Roy R. Chaudhuri; Eirwen Morgan; Sarah E. Peters; Stephen J. Pleasance; Debra L. Hudson; Holly Davies; Jinhong Wang; Pauline M. van Diemen; Anthony M. Buckley; Alison J. Bowen; Gillian D. Pullinger; Daniel J. Turner; Gemma C. Langridge; A. Keith Turner; Julian Parkhill; Ian G. Charles; Duncan J. Maskell; Mark P. Stevens

Chickens, pigs, and cattle are key reservoirs of Salmonella enterica, a foodborne pathogen of worldwide importance. Though a decade has elapsed since publication of the first Salmonella genome, thousands of genes remain of hypothetical or unknown function, and the basis of colonization of reservoir hosts is ill-defined. Moreover, previous surveys of the role of Salmonella genes in vivo have focused on systemic virulence in murine typhoid models, and the genetic basis of intestinal persistence and thus zoonotic transmission have received little study. We therefore screened pools of random insertion mutants of S. enterica serovar Typhimurium in chickens, pigs, and cattle by transposon-directed insertion-site sequencing (TraDIS). The identity and relative fitness in each host of 7,702 mutants was simultaneously assigned by massively parallel sequencing of transposon-flanking regions. Phenotypes were assigned to 2,715 different genes, providing a phenotype–genotype map of unprecedented resolution. The data are self-consistent in that multiple independent mutations in a given gene or pathway were observed to exert a similar fitness cost. Phenotypes were further validated by screening defined null mutants in chickens. Our data indicate that a core set of genes is required for infection of all three host species, and smaller sets of genes may mediate persistence in specific hosts. By assigning roles to thousands of Salmonella genes in key reservoir hosts, our data facilitate systems approaches to understand pathogenesis and the rational design of novel cross-protective vaccines and inhibitors. Moreover, by simultaneously assigning the genotype and phenotype of over 90% of mutants screened in complex pools, our data establish TraDIS as a powerful tool to apply rich functional annotation to microbial genomes with minimal animal use.


PLOS Pathogens | 2011

Salmonella bongori Provides Insights into the Evolution of the Salmonellae

Maria Fookes; Gunnar N. Schroeder; Gemma C. Langridge; Carlos J. Blondel; Caterina Mammina; Thomas Richard Connor; Helena M. B. Seth-Smith; Georgios S. Vernikos; Keith S. Robinson; Mandy Sanders; Nicola K. Petty; Robert A. Kingsley; Andreas J. Bäumler; Sean Paul Nuccio; Inés Contreras; Carlos A. Santiviago; Duncan J. Maskell; Paul A. Barrow; Tom J. Humphrey; Antonino Nastasi; Mark Roberts; Gad Frankel; Julian Parkhill; Gordon Dougan; Nicholas R. Thomson

The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Patterns of genome evolution that have accompanied host adaptation in Salmonella

Gemma C. Langridge; Maria Fookes; Thomas Richard Connor; Theresa Feltwell; Nicholas A. Feasey; Bryony Parsons; Helena M. B. Seth-Smith; Lars Barquist; Anna Stedman; Tom J. Humphrey; Paul Wigley; Sarah E. Peters; Duncan J. Maskell; Jukka Corander; José A. Chabalgoity; Paul A. Barrow; Julian Parkhill; Gordon Dougan; Nicholas R. Thomson

Significance Common features have been observed in the genome sequences of bacterial pathogens that infect few hosts. These “host adaptations” include the acquisition of pathogenicity islands of multiple genes involved in disease, losses of whole genes, and even single mutations that affect gene function. Within Salmonella enterica is a natural model system of four pathogens that are each other’s closest relatives, including a host-generalist, two host-specialists, and one with strong host associations. With whole-genome sequences, we aimed to improve our understanding of the number, nature, and order of these host adaptation events, shedding light on how human and animal pathogens arose in the past, and potentially allowing us to predict how emerging pathogens will evolve in the future. Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation.


Nucleic Acids Research | 2013

A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium

Lars Barquist; Gemma C. Langridge; Daniel J. Turner; Minh-Duy Phan; A. Keith Turner; Alex Bateman; Julian Parkhill; John Wain; Paul P. Gardner

Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study, we use transposon-directed insertion-site sequencing to probe differences in gene requirements for competitive growth in rich media between these two closely related serovars. We identify a conserved core of 281 genes that are required for growth in both serovars, 228 of which are essential in Escherichia coli. We are able to identify active prophage elements through the requirement for their repressors. We also find distinct differences in requirements for genes involved in cell surface structure biogenesis and iron utilization. Finally, we demonstrate that transposon-directed insertion-site sequencing is not only applicable to the protein-coding content of the cell but also has sufficient resolution to generate hypotheses regarding the functions of non-coding RNAs (ncRNAs) as well. We are able to assign probable functions to a number of cis-regulatory ncRNA elements, as well as to infer likely differences in trans-acting ncRNA regulatory networks.


Infection and Immunity | 2013

Sequencing and Functional Annotation of Avian Pathogenic Escherichia coli Serogroup O78 Strains Reveal the Evolution of E. coli Lineages Pathogenic for Poultry via Distinct Mechanisms

Francis Dziva; Heidi Hauser; Thomas Richard Connor; Pauline M. van Diemen; Graham Prescott; Gemma C. Langridge; Sabine Eckert; Roy R. Chaudhuri; Christa Ewers; Melha Mellata; Suman Mukhopadhyay; Roy Curtiss; Gordon Dougan; Lothar H. Wieler; Nicholas R. Thomson; Derek Pickard; Mark P. Stevens

ABSTRACT Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.


Nature Genetics | 2016

Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings

Nicholas A. Feasey; James Hadfield; Karen H. Keddy; Timothy J. Dallman; Jan Jacobs; Xiangyu Deng; Paul Wigley; Lars Barquist; Gemma C. Langridge; Theresa Feltwell; Simon R. Harris; Alison E. Mather; Maria Fookes; Martin Aslett; Chisomo L. Msefula; Samuel Kariuki; Calman A. MacLennan; Robert S. Onsare; F X Weill; Simon Le Hello; Anthony M. Smith; Michael McClelland; Prerak T. Desai; Christopher M. Parry; John S. Cheesbrough; Neil French; Josefina Campos; José A. Chabalgoity; Laura Betancor; Katie L. Hopkins

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.


Infection and Immunity | 2015

Genome-wide transposon mutagenesis indicates that Mycobacterium marinum customizes its virulence mechanisms for survival and replication in different hosts

Eveline M. Weerdenburg; Abdallah M. Abdallah; Farania Rangkuti; Moataz Abd El Ghany; Thomas D. Otto; Sabir A. Adroub; Douwe Molenaar; Roy Ummels; Kars ter Veen; Gunny van Stempvoort; Astrid M. van der Sar; Shahjahan Ali; Gemma C. Langridge; Nicholas R. Thomson; Arnab Pain; Wilbert Bitter

ABSTRACT The interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers.

Collaboration


Dive into the Gemma C. Langridge's collaboration.

Top Co-Authors

Avatar

Nicholas R. Thomson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Satheesh Nair

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Christophersen

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge