Gen Der Chen
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gen Der Chen.
Journal of Bone and Mineral Research | 2011
Anne Gaëlle Lafont; Yi Fang Wang; Gen Der Chen; Bo Kai Liao; Yung Che Tseng; Chang Jen Huang; Pung-Pung Hwang
Calcitonin (CT) is one of the hormones involved in vertebrate calcium regulation. It has been proposed to act as a hypocalcemic factor, but the regulatory pathways remain to be clarified. We investigated the CT/calcitonin gene–related peptide (CGRP) family in zebrafish and its potential involvement in calcium homeostasis. We identified the presence of four receptors: CTR, CRLR1, CRLR2, and CRLR3. From the phylogenetic analysis, together with the effect observed after CT and CGRP overexpression, we concluded that CTR appears to be a CT receptor and CRLR1 a CGRP receptor. The distribution of these two receptors shows a major presence in the central nervous system and in tissues involved in ionoregulation. Zebrafish embryos kept in high‐Ca2+‐concentration medium showed upregulation of CT and CTR expression and downregulation of the epithelial calcium channel (ECaC). Embryos injected with CT morpholino (CALC MO) incubated in high‐Ca2+ medium, showed downregulation of CTR together with upregulation on ECaC mRNA expression. In contrast, overexpression of CT cRNA induced the downregulation of ECaC mRNA synthesis, concomitant with the downregulation in the calcium content after 30 hours postfertilization. At 4 days postfertilization, CT cRNA injection induced upregulation of hypercalcemic factors, with subsequent increase in the calcium content. These results suggest that CT acts as a hypocalcemic factor in calcium regulation, probably through inhibition of ECaC synthesis.
Developmental Dynamics | 2009
Yi Chung Chen; Chia Hsiung Cheng; Gen Der Chen; Chin Chun Hung; Chung Hsiang Yang; Sheng-Ping L. Hwang; Koichi Kawakami; Bo Kai Wu; Chang Jen Huang
Human synuclein family consists of α‐, β‐, and γ‐synucleins. Here, we cloned three genes, sncb, sncga and sncgb from zebrafish. They encode β‐, γ1‐, and γ2‐synucleins, respectively. The zSyn‐β, zSyn‐γ1, and zSyn‐γ2 proteins display 69%, 47%, and 50% identity to human β‐synuclein and γ‐synuclein, respectively. By reverse transcriptase‐polymerase chain reaction, we demonstrated that sncb and sncga mRNA were abundant in brain and eye, while sncgb expression was moderate in brain, kidney, ovary and testis. The 1.8‐kb 5′‐upstream/promoter region of the sncga gene was sufficient to direct green fluorescent protein (GFP) expression in the central nervous system and cranial ganglions. A transgenic line, Tg(sncga:GFP), was generated and its GFP expression is similar to that of endogenous sncga mRNA. Moreover, this line also labels the habenular complex and the domain of GFP expression is larger in the left than in the right habenula. Thus, this line can be used to study sncga gene regulation and for left–right asymmetry study in zebrafish brain. Developmental Dynamics 238:746–754, 2009.
Fish & Shellfish Immunology | 2010
Chia Hsiung Cheng; Gen Der Chen; Maw Sheng Yeh; Cheng Ying Chu; Ya Li Hsu; Pung-Pung Hwang; Fore Lien Huang; Chang Jen Huang
In this study, we isolated and characterized both JAK and STAT genes from Artemia, Artemia franciscana. Although AfJAK showed only 19% identity (33% similarity) to the Drosophila Hop protein, AfJAK contained the characteristic JAK homology domain (JH domain) from JH1 to JH7. On the other hand, AfSTAT showed higher identity (30%) to Drosophila STAT (STAT92E). The low identities of AfJAK and AfSTAT to Drosophila Hop and STAT92E suggest that JAK and STAT proteins are unique in each different species of invertebrate. RT-PCR analysis showed that both AfJAK and AfSTAT transcripts were ubiquitously expressed in the embryo, which is similar to the expression patterns of Drosophila Hop and STAT92E mRNAs during development. In addition, we generated a constitutively active form of AfSTAT by fusing the JH1 domain of AfJAK to the C-terminal end of AfSTAT. This fusion protein, AfSTAT-HA-JH1, autophosphorylated on its tyrosine residue and was able to bind to specific DNA motifs including the STAT-binding motifs in the Drosophila Raf promoter. Both AfJAK and AfSTAT proteins elicited the transactivation potential toward the fly Raf promoter in Sf9 cells. However, tyrosine phosphorylation of AfSTAT was not detected, which is consistent with the cellular localization analysis that most AfSTAT proteins were in the cytoplasm. Our results demonstrate that both JAK and STAT are present in the genome of Artemia, which can serve as the basis for further investigations to explore the role of the JAK/STAT signal pathway in the development and immune response of brine shrimp.
PLOS ONE | 2011
Kai Yun Huang; Gen Der Chen; Chia Hsiung Cheng; Kuan Ya Liao; Chin Chun Hung; Geen-Dong Chang; Pung-Pung Hwang; Shu-Yu Lin; Ming Chieh Tsai; Kay Hooi Khoo; Ming Ting Lee; Chang Jen Huang
Background Mammalian M6A, a member of the proteolipid protein (PLP/DM20) family expressed in neurons, was first isolated by expression cloning with a monoclonal antibody. Overexpression of M6A was shown to induce filopodium formation in neuronal cells; however, the underlying mechanism of is largely unknown. Possibly due to gene duplication, there are two M6A paralogs, M6Aa and M6Ab, in the zebrafish genome. In the present study, we used the zebrafish as a model system to investigate the role of zebrafish M6Ab in filopodium formation in PC12 cells and neurite outgrowth in zebrafish embryos. Methodology/Principal Findings We demonstrated that zebrafish M6Ab promoted extensive filopodium formation in NGF-treated PC12 cells, which is similar to the function of mammalian M6A. Phosphorylation at serine 263 of zebrafish M6Ab contributed to this induction. Transfection of the S263A mutant protein greatly reduced filopodium formation in PC12 cells. In zebrafish embryos, only S263D could induce neurite outgrowth. Conclusions/Significance Our results reveal that the phosphorylation status of zebrafish M6Ab at serine 263 is critical for its role in regulating filopodium formation and neurite outgrowth.
Fish & Shellfish Immunology | 2010
Shu Chiun Sung; Chia Hsiung Cheng; Chih Ming Chou; Cheng Ying Chu; Gen Der Chen; Pung-Pung Hwang; Fore Lien Huang; Chang Jen Huang
In this paper, we report the cloning and characterization of the STAT6 gene from the pufferfish, Tetraodon nigroviridis. The TnSTAT6 gene is composed of 20 exons and 19 introns. The exon-intron organization of this gene is similar to that of HsSTAT6 except for the exons encoding the C-terminal transactivation domain. The full-length complementary (c)DNA of TnSTAT6 encodes a 794-amino acid protein that is 31% identical to human STAT6. We generated a constitutively active TnSTAT6-JH1 by fusing the kinase domain of carp JAK1 to the C-terminal end of TnSTAT6 and demonstrated that the fusion protein has specific DNA-binding ability and can activate a reporter construct carrying multiple copies of mammalian IL-4-response elements. Interestingly, TnSTAT6-JH1 associated with and phosphorylated TnSTAT6 on Tyr661. Mutation of this residue, Y661W, in TnSTAT6 abolished its association with TnSTAT6-JH1. This is consistent with the importance of the corresponding Tyr641 of HsSTAT6 in tyrosine phosphorylation and dimer formation. On the other hand, treatment of mammalian IL-4 did not induce tyrosine phosphorylation of wild-type TnSTAT6, suggesting that both the divergent N-terminal domain and coiled-coiled domain of TnSTAT6 may affect the interaction of TnSTAT6 with mammalian IL-4 receptor complexes.
Developmental and Comparative Immunology | 2008
Maw Sheng Yeh; Chia Hsiung Cheng; Chih Ming Chou; Ya Li Hsu; Cheng Ying Chu; Gen Der Chen; Shui Tsung Chen; Guang Chao Chen; Chang Jen Huang
In invertebrates, the JAK-STAT signaling pathway is involved in the anti-bacterial response and is part of an anti-viral response in Drosophila. In this study, we show that two STAT transcripts are generated by alternative splicing and encode two isoforms of Sf-STAT with different C-terminal ends. These two isoforms were produced and purified using the recombinant baculovirus technology. Both purified isoforms showed similar DNA-binding activity and displayed weak but significant transactivation potential toward a Drosophila promoter that contained a STAT-binding motif. No significant activation of the Sf-STAT protein in Sf9 cells was found by infection with baculovirus AcMNPV.
Fish & Shellfish Immunology | 2014
Chia Hsiung Cheng; Chih Ming Chou; Cheng Ying Chu; Gen Der Chen; Huang Wei Lien; Pung-Pung Hwang; Mau-Sun Chang; Chang Jen Huang
Induction of interferons (IFNs) produces an innate immune response through activation of the JAK-STAT signaling pathway. Type I IFN signaling activates downstream gene expression through the IFN-stimulated gene factor 3 (ISGF3) complex, while type II IFN (IFN-γ) signaling is mediated through active STAT1 protein. The IFN target gene Mx is involved in the defense against viral infection. However, the mechanism by which Tetraodon (pufferfish) Mx is regulated by IFN signaling has not been identified. In this study, we describe the cloning and expression of Tetraodon STAT1, STAT2, and IFN regulatory factor 9 (IRF9). By combining constitutively-active STAT1 (STAT1-JH1) and STAT2 (STA2-JH1) fusion proteins with IRF9, we demonstrate that a constitutively-active ISGF3 complex increases the transcriptional activity of the Tetraodon Mx promoter via direct binding to two IFN-stimulated response element (ISRE) sites. In addition, a constitutively-active TnIRF9-S2C containing a fusion of the C-terminal region of STAT2 and IRF9 also activated the Mx promoter through binding to the ISRE sites. Furthermore, constitutively-active STAT1-JH1 elevates Mx promoter activity through two IFN gamma-activated sequence (GAS) elements. The Mx promoter is also activated by constitutively-active TnIRF9-S2C and STAT1-JH1 protein, as determined using an in vivo luciferase assay. We conclude that the Tetraodon Mx gene is activated via Type I (IFN-1) and Type II (IFN-γ) signaling. These results provide mechanistic insights into the role of IFN signaling in teleosts, and the in vivo luciferase assay may be suitable as a tool for studying induction and regulation by IFNs in teleost fish.
Cellular and Molecular Life Sciences | 2013
Wei Hao Liao; Chia Hsiung Cheng; Kuo Sheng Hung; Wen Ta Chiu; Gen Der Chen; Pung-Pung Hwang; Sheng-Ping L. Hwang; Yung Shu Kuan; Chang Jen Huang
Protein activities controlled by receptor protein tyrosine phosphatases (RPTPs) play comparably important roles in transducing cell surface signals into the cytoplasm by protein tyrosine kinases. Previous studies showed that several RPTPs are involved in neuronal generation, migration, and axon guidance in Drosophila, and the vertebrate hippocampus, retina, and developing limbs. However, whether the protein tyrosine phosphatase type O (ptpro), one kind of RPTP, participates in regulating vertebrate brain development is largely unknown. We isolated the zebrafish ptpro gene and found that its transcripts are primarily expressed in the embryonic and adult central nervous system. Depletion of zebrafish embryonic Ptpro by antisense morpholino oligonucleotide knockdown resulted in prominent defects in the forebrain and cerebellum, and the injected larvae died on the 4th day post-fertilization (dpf). We further investigated the function of ptpro in cerebellar development and found that the expression of ephrin-A5b (efnA5b), a Fgf signaling induced cerebellum patterning factor, was decreased while the expression of dusp6, a negative-feedback gene of Fgf signaling in the midbrain-hindbrain boundary region, was notably induced in ptpro morphants. Further analyses demonstrated that cerebellar defects of ptpro morphants were partially rescued by inhibiting Fgf signaling. Moreover, Ptpro physically interacted with the Fgf receptor 1a (Fgfr1a) and dephosphorylated Fgfr1a in a dose-dependant manner. Therefore, our findings demonstrate that Ptpro activity is required for patterning the zebrafish embryonic brain. Specifically, Ptpro regulates cerebellar formation during zebrafish development through modulating Fgf signaling.
PLOS ONE | 2011
Chung Hsiang Yang; Chia Hsiung Cheng; Gen Der Chen; Wei Hao Liao; Yi Chung Chen; Kai Yun Huang; Pung-Pung Hwang; Sheng-Ping L. Hwang; Chang Jen Huang
Background The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear. Methodology/Principal Findings We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised. Conclusions/Significance Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function.
Nucleic Acids Research | 2010
Yi Chung Chen; Bo Kai Wu; Cheng Ying Chu; Chia Hsiung Cheng; Hau Wei Han; Gen Der Chen; Ming Ting Lee; Pung Pung Hwang; Koichi Kawakami; Chun-che Chang; Chang Jen Huang
In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5′-upstream region of each gene from a BAC clone and demonstrated that the putative promoter regions, P1-P3, are functional in cultured cells and zebrafish embryos. A transgenic zebrafish Tg(Nogo-B:GFP) line was generated using P1 promoter region to drive green fluorescent protein (GFP) expression through Tol2-mediated transgenesis. This line recapitulates the endogenous expression pattern of Rtn4-l/Nogo-B mRNA in the brain, brachial arches, eyes, muscle, liver and intestines. In contrast, GFP expressions by P2 and P3 promoters were localized to skeletal muscles of zebrafish embryos. Several GATA and E-box motifs are found in these promoter regions. Using morpholino knockdown experiments, GATA4 and GATA6 were involved in the control of P1 promoter activity in the liver and intestine, while Myf5 and MyoD for the control of P1 and P3 promoter activities in muscles. These data demonstrate that zebrafish Rtn4/Nogo transcripts might be generated by coupling mechanisms of alternative first exons and alternative promoter usage.