Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey J. Gordon is active.

Publication


Featured researches published by Geoffrey J. Gordon.


Journal of Artificial Intelligence Research | 2006

Anytime point-based approximations for large POMDPs

Joelle Pineau; Geoffrey J. Gordon; Sebastian Thrun

The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with point-based value backups to form an effective anytime POMDP algorithm called Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks.


Automatica | 2010

Brief paper: Decentralized estimation and control of graph connectivity for mobile sensor networks

Peng Yang; Randy A. Freeman; Geoffrey J. Gordon; Kevin M. Lynch; Siddhartha S. Srinivasa; Rahul Sukthankar

The ability of a robot team to reconfigure itself is useful in many applications: for metamorphic robots to change shape, for swarm motion towards a goal, for biological systems to avoid predators, or for mobile buoys to clean up oil spills. In many situations, auxiliary constraints, such as connectivity between team members and limits on the maximum hop-count, must be satisfied during reconfiguration. In this paper, we show that both the estimation and control of the graph connectivity can be accomplished in a decentralized manner. We describe a decentralized estimation procedure that allows each agent to track the algebraic connectivity of a time-varying graph. Based on this estimator, we further propose a decentralized gradient controller for each agent to maintain global connectivity during motion.


Journal of Artificial Intelligence Research | 2005

Finding approximate POMDP solutions through belief compression

Nicholas Roy; Geoffrey J. Gordon; Sebastian Thrun

Recent research in the field of robotics has demonstrated the utility of probabilistic models for perception and state tracking on deployed robot systems. For example, Kalman filters and Markov localisation have been used successfully in many robot applications (Leonard & Durrant-Whyte, 1991; Thrun et al., 2000). There has also been considerable research into control and decision making algorithms that are robust in the face of specific kinds of uncertainty (Bagnell & Schneider, 2001). Few control algorithms, however, make use of full probabilistic representations throughout planning. As a consequence, robot control can become increasingly brittle as the systems perceptual uncertainty, and state uncertainty, increase. This thesis addresses the problem of decision making under uncertainty. In particular, we use a planning model called the partially observable Markov decision process, or POMDP (Sondik, 1971). The POMDP model computes a policy that maximises the expected future reward based on the complete probabilistic state estimate, or belief. Unfortunately, finding an optimal policy exactly is computationally demanding and thus infeasible for most problems that represent real world scenarios. This thesis describes a scalable approach to POMDP planning which uses low-dimensional representations of the belief space. We demonstrate how to make use of a variant of Principal Components Analysis (PCA) called Exponential family PCA (Collins et al., 2002) in order to compress certain kinds of large real-world POMDPs, and find policies for these problems. By finding low-dimensional representations of POMDPS, we are able to find good policies for problems that are orders of magnitude larger than those solvable by conventional approaches.


adaptive agents and multi-agents systems | 2004

Approximate Solutions for Partially Observable Stochastic Games with Common Payoffs

Rosemary Emery-Montemerlo; Geoffrey J. Gordon; Jeff G. Schneider; Sebastian Thrun

Partially observable decentralized decision making in robot teams is fundamentally different from decision making in fully observable problems. Team members cannot simply apply single-agent solution techniques in parallel. Instead, we must turn to game theoretic frameworks to correctly model the problem. While partially observable stochastic games (POSGs) provide a solution model for decentralized robot teams, this model quickly becomes intractable. We propose an algorithm that approximates POSGs as a series of smaller, related Bayesian games, using heuristics such as QMDP to provide the future discounted value of actions. This algorithm trades off limited look-ahead in uncertainty for computational feasibility, and results in policies that are locally optimal with respect to the selected heuristic. Empirical results are provided for both a simple problem for which the full POSG can also be constructed, as well as more complex, robot-inspired, problems.


Artificial Intelligence | 2008

Anytime search in dynamic graphs

Maxim Likhachev; Dave Ferguson; Geoffrey J. Gordon; Anthony Stentz; Sebastian Thrun

Agents operating in the real world often have limited time available for planning their next actions. Producing optimal plans is infeasible in these scenarios. Instead, agents must be satisfied with the best plans they can generate within the time available. One class of planners well-suited to this task are anytime planners, which quickly find an initial, highly suboptimal plan, and then improve this plan until time runs out. A second challenge associated with planning in the real world is that models are usually imperfect and environments are often dynamic. Thus, agents need to update their models and consequently plans over time. Incremental planners, which make use of the results of previous planning efforts to generate a new plan, can substantially speed up each planning episode in such cases. In this paper, we present an A^*-based anytime search algorithm that produces significantly better solutions than current approaches, while also providing suboptimality bounds on the quality of the solution at any point in time. We also present an extension of this algorithm that is both anytime and incremental. This extension improves its current solution while deliberation time allows and is able to incrementally repair its solution when changes to the world model occur. We provide a number of theoretical and experimental results and demonstrate the effectiveness of the approaches in a robot navigation domain involving two physical systems. We believe that the simplicity, theoretical properties, and generality of the presented methods make them well suited to a range of search problems involving dynamic graphs.


The International Journal of Robotics Research | 2006

Visibility-based Pursuit-evasion with Limited Field of View

Brian P. Gerkey; Sebastian Thrun; Geoffrey J. Gordon

We study the visibility-based pursuit-evasion problem, in which one or more searchers must move through a given environment so as to guarantee detection of any and all evaders, which can move arbitrarily fast. Our goal is to develop techniques for coordinating teams of robots to execute this task in application domains such as clearing a building, for reasons of security or safety. To this end, we introduce a new class of searcher, the φ-searcher, which can be readily instantiated as a physical mobile robot. We present a detailed analysis of the pursuit-evasion problem using φ-searchers. We present the first complete search algorithm for a single φ-searcher, show how this algorithm can be extended to handle multiple searchers, and give examples of computed trajectories.


IEEE Robotics & Automation Magazine | 2004

Real-time fault diagnosis [robot fault diagnosis]

Vandi Verma; Geoffrey J. Gordon; Reid G. Simmons; Sebastian Thrun

This article presents a number of complementary algorithms for detecting faults on-board operating robots, where a fault is defined as a deviation from expected behavior. The algorithms focus on faults that cannot directly be detected from current sensor values but require inference from a sequence of time-varying sensor values. Each algorithm provides an independent improvement over the basic approach. These improvements are not mutually exclusive, and the algorithms may be combined to suit the application domain. All the approaches presented require dynamic models representing the behavior of each of the fault and operational states. These models can be built from analytical models of the robot dynamics, data from simulation, or from the real robot. All the approaches presented detect faults from a finite number of known fault conditions, although there may potentially be a very large number of these faults.


european conference on machine learning | 2008

A Unified View of Matrix Factorization Models

Ajit Paul Singh; Geoffrey J. Gordon

We present a unified view of matrix factorization that frames the differences among popular methods, such as NMF, Weighted SVD, E-PCA, MMMF, pLSI, pLSI-pHITS, Bregman co-clustering, and many others, in terms of a small number of modeling choices. Many of these approaches can be viewed as minimizing a generalized Bregman divergence, and we show that (i) a straightforward alternating projection algorithm can be applied to almost any model in our unified view; (ii) the Hessian for each projection has special structure that makes a Newton projection feasible, even when there are equality constraints on the factors, which allows for matrix co-clustering; and (iii) alternating projections can be generalized to simultaneously factor a set of matrices that share dimensions. These observations immediately yield new optimization algorithms for the above factorization methods, and suggest novel generalizations of these methods such as incorporating row and column biases, and adding or relaxing clustering constraints.


Artificial Intelligence in Medicine | 1997

An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality

Gregory F. Cooper; Constantin F. Aliferis; Richard Ambrosino; John M. Aronis; Bruce G. Buchanan; Rich Caruana; Michael J. Fine; Clark Glymour; Geoffrey J. Gordon; Barbara H. Hanusa; Janine E. Janosky; Christopher Meek; Tom M. Mitchell; Thomas S. Richardson; Peter Spirtes

This paper describes the application of eight statistical and machine-learning methods to derive computer models for predicting mortality of hospital patients with pneumonia from their findings at initial presentation. The eight models were each constructed based on 9847 patient cases and they were each evaluated on 4352 additional cases. The primary evaluation metric was the error in predicted survival as a function of the fraction of patients predicted to survive. This metric is useful in assessing a models potential to assist a clinician in deciding whether to treat a given patient in the hospital or at home. We examined the error rates of the models when predicting that a given fraction of patients will survive. We examined survival fractions between 0.1 and 0.6. Over this range, each models predictive error rate was within 1% of the error rate of every other model. When predicting that approximately 30% of the patients will survive, all the models have an error rate of less than 1.5%. The models are distinguished more by the number of variables and parameters that they contain than by their error rates; these differences suggest which models may be the most amenable to future implementation as paper-based guidelines.


The International Journal of Robotics Research | 2011

Closing the learning-planning loop with predictive state representations

Byron Boots; Sajid M. Siddiqi; Geoffrey J. Gordon

A central problem in artificial intelligence is to choose actions to maximize reward in a partially observable, uncertain environment. To do so, we must learn an accurate environment model, and then plan to maximize reward. Unfortunately, learning algorithms often recover a model that is too inaccurate to support planning or too large and complex for planning to succeed; or they require excessive prior domain knowledge or fail to provide guarantees such as statistical consistency. To address this gap, we propose a novel algorithm which provably learns a compact, accurate model directly from sequences of action-observation pairs. We then evaluate the learner by closing the loop from observations to actions. In more detail, we present a spectral algorithm for learning a predictive state representation (PSR), and evaluate it in a simulated, vision-based mobile robot planning task, showing that the learned PSR captures the essential features of the environment and enables successful and efficient planning. Our algorithm has several benefits which have not appeared together in any previous PSR learner: it is computationally efficient and statistically consistent; it handles high-dimensional observations and long time horizons; and, our close-the-loop experiments provide an end-to-end practical test.

Collaboration


Dive into the Geoffrey J. Gordon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron Boots

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmed Hefny

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Han Zhao

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Yaron

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Maxim Likhachev

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Platzer

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge