Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Thrun is active.

Publication


Featured researches published by Sebastian Thrun.


Machine Learning | 2000

Text Classification from Labeled and Unlabeled Documents using EM

Kamal Nigam; Andrew McCallum; Sebastian Thrun; Tom M. Mitchell

This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available.We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve classification accuracy under these conditions: (1) a weighting factor to modulate the contribution of the unlabeled data, and (2) the use of multiple mixture components per class. Experimental results, obtained using text from three different real-world tasks, show that the use of unlabeled data reduces classification error by up to 30%.


Artificial Intelligence | 2001

Robust Monte Carlo localization for mobile robots

Sebastian Thrun; Dieter Fox; Wolfram Burgard; Frank Dallaert

Mobile robot localization is the problem of determining a robot’s pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot’s belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach.  2001 Published by Elsevier Science B.V.


IEEE Robotics & Automation Magazine | 1997

The dynamic window approach to collision avoidance

Dieter Fox; Wolfram Burgard; Sebastian Thrun

This approach, designed for mobile robots equipped with synchro-drives, is derived directly from the motion dynamics of the robot. In experiments, the dynamic window approach safely controlled the mobile robot RHINO at speeds of up to 95 cm/sec, in populated and dynamic environments.


international conference on robotics and automation | 1999

Monte Carlo localization for mobile robots

Frank Dellaert; Dieter Fox; Wolfram Burgard; Sebastian Thrun

To navigate reliably in indoor environments, a mobile robot must know where it is. Thus, reliable position estimation is a key problem in mobile robotics. We believe that probabilistic approaches are among the most promising candidates to providing a comprehensive and real-time solution to the robot localization problem. However, current methods still face considerable hurdles. In particular the problems encountered are closely related to the type of representation used to represent probability densities over the robots state space. Earlier work on Bayesian filtering with particle-based density representations opened up a new approach for mobile robot localization based on these principles. We introduce the Monte Carlo localization method, where we represent the probability density involved by maintaining a set of samples that are randomly drawn from it. By using a sampling-based representation we obtain a localization method that can represent arbitrary distributions. We show experimentally that the resulting method is able to efficiently localize a mobile robot without knowledge of its starting location. It is faster, more accurate and less memory-intensive than earlier grid-based methods,.


Journal of Field Robotics | 2006

Stanley: The Robot That Won the DARPA Grand Challenge

Sebastian Thrun; Michael Montemerlo; Hendrik Dahlkamp; David Stavens; Andrei Aron; James Diebel; Philip Fong; John Gale; Morgan Halpenny; Gabriel M. Hoffmann; Kenny Lau; Celia M. Oakley; Mark Palatucci; Vaughan R. Pratt; Pascal P. Stang; Sven Strohband; Cedric Dupont; Lars-Erik Jendrossek; Christian Koelen; Charles Markey; Carlo Rummel; Joe van Niekerk; Eric Jensen; Philippe Alessandrini; Gary R. Bradski; Bob Davies; Scott M. Ettinger; Adrian Kaehler; Ara V. Nefian; Pamela Mahoney

This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without human intervention. The robot’s software system relied predominately on state-of-the-art AI technologies, such as machine learning and probabilistic reasoning. This article describes the major components of this architecture, and discusses the results of the Grand Challenge race.


Science | 2010

Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture

Penney M. Gilbert; Karen Havenstrite; Klas E. G. Magnusson; Alessandra Sacco; N. A. Leonardi; Peggy E. Kraft; N. K. Nguyen; Sebastian Thrun; Matthias P. Lutolf; Helen M. Blau

Environment Matters Stem cells isolated from muscle can be used for muscle regeneration, but only if the stem cells are fresh. Under standard cell culture conditions in the laboratory, muscle stem cells fail to proliferate efficiently and lose their regenerative capacity. Gilbert et al. (p. 1078, published online 15 July; see the Perspective by Bhatia) built an in vitro–culture system that resembles the physical characteristics in which muscle stem cells normally reside: a squishy elastic bed (rather than the hard slab of a plastic culture flask). Laminin tethered to hydrogels was used to generate substrates of varying elasticity. When cultured on these substrates, muscle stem cells remained undifferentiated and were able to support muscle regeneration when transplanted back into mice. Muscle stem cells prefer a soft substrate. Stem cells that naturally reside in adult tissues, such as muscle stem cells (MuSCs), exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a highly automated single-cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (~106 kilopascals), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12 kilopascals) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by noninvasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle-wasting diseases.


Artificial Intelligence | 1998

Learning metric-topological maps for indoor mobile robot navigation

Sebastian Thrun

Abstract Autonomous robots must be able to learn and maintain models of their environments. Research on mobile robot navigation has produced two major paradigms for mapping indoor environments: grid-based and topological. While grid-based methods produce accurate metric maps, their complexity often prohibits efficient planning and problem solving in large-scale indoor environments. Topological maps, on the other hand, can be used much more efficiently, yet accurate and consistent topological maps are often difficult to learn and maintain in large-scale environments, particularly if momentary sensor data is highly ambiguous. This paper describes an approach that integrates both paradigms: grid-based and topological. Grid-based maps are learned using artificial neural networks and naive Bayesian integration. Topological maps are generated on top of the grid-based maps, by partitioning the latter into coherent regions. By combining both paradigms, the approach presented here gains advantages from both worlds: accuracy/consistency and efficiency. The paper gives results for autonomous exploration, mapping and operation of a mobile robot in populated multi-room environments.


Machine Learning | 1998

A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots

Sebastian Thrun; Wolfram Burgard; Dieter Fox

This paper addresses the problem of building large-scale geometric maps of indoor environments with mobile robots. It poses the map building problem as a constrained, probabilistic maximum-likelihood estimation problem. It then devises a practical algorithm for generating the most likely map from data, along with the most likely path taken by the robot. Experimental results in cyclic environments of size up to 80 by 25 meter illustrate the appropriateness of the approach.


international conference on computer graphics and interactive techniques | 2005

SCAPE: shape completion and animation of people

Dragomir Anguelov; Praveen Srinivasan; Daphne Koller; Sebastian Thrun; Jim Rodgers; James Davis

We introduce the SCAPE method (Shape Completion and Animation for PEople)---a data-driven method for building a human shape model that spans variation in both subject shape and pose. The method is based on a representation that incorporates both articulated and non-rigid deformations. We learn a pose deformation model that derives the non-rigid surface deformation as a function of the pose of the articulated skeleton. We also learn a separate model of variation based on body shape. Our two models can be combined to produce 3D surface models with realistic muscle deformation for different people in different poses, when neither appear in the training set. We show how the model can be used for shape completion --- generating a complete surface mesh given a limited set of markers specifying the target shape. We present applications of shape completion to partial view completion and motion capture animation. In particular, our method is capable of constructing a high-quality animated surface model of a moving person, with realistic muscle deformation, using just a single static scan and a marker motion capture sequence of the person.


Journal of Artificial Intelligence Research | 1999

Markov localization for mobile robots in dynamic environments

Dieter Fox; Wolfram Burgard; Sebastian Thrun

Localization, that is the estimation of a robots location from sensor data, is a fundamental problem in mobile robotics. This papers presents a version of Markov localization which provides accurate position estimates and which is tailored towards dynamic environments. The key idea of Markov localization is to maintain a probability density over the space of all locations of a robot in its environment. Our approach represents this space metrically, using a fine-grained grid to approximate densities. It is able to globally localize the robot from scratch and to recover from localization failures. It is robust to approximate models of the environment (such as occupancy grid maps) and noisy sensors (such as ultrasound sensors). Our approach also includes a filtering technique which allows a mobile robot to reliably estimate its position even in densely populated environments in which crowds of people block the robots sensors for extended periods of time. The method described here has been implemented and tested in several real-world applications of mobile robots, including the deployments of two mobile robots as interactive museum tour-guides.

Collaboration


Dive into the Sebastian Thrun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Fox

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas Roy

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Dellaert

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom M. Mitchell

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge