Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madhan R. Tirumalai is active.

Publication


Featured researches published by Madhan R. Tirumalai.


BMC Microbiology | 2007

Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

Sarah K. Highlander; Kristina G. Hulten; Xiang Qin; Huaiyang Jiang; Shailaja Yerrapragada; Edward O. Mason; Yue Shang; Tiffany M. Williams; Régine M Fortunov; Yamei Liu; Okezie Igboeli; Joseph F. Petrosino; Madhan R. Tirumalai; Akif Uzman; George E. Fox; Ana Maria Cardenas; Donna M. Muzny; Lisa Hemphill; Yan Ding; Shannon Dugan; Peter R Blyth; Christian Buhay; Huyen Dinh; Alicia Hawes; Michael Holder; Christie Kovar; Sandra L. Lee; Wen Liu; Lynne V. Nazareth; Qiaoyan Wang

BackgroundCommunity acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.ResultsWe sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Childrens Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.ConclusionUSA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


PLOS ONE | 2007

Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032

Jason Gioia; Shailaja Yerrapragada; Xiang Qin; Huaiyang Jiang; Okezie Igboeli; Donna M. Muzny; Shannon Dugan-Rocha; Yan Ding; Alicia Hawes; Wen Liu; Lesette Perez; Christie Kovar; Huyen Dinh; Sandra L. Lee; Lynne V. Nazareth; Peter R Blyth; Michael Holder; Christian Buhay; Madhan R. Tirumalai; Yamei Liu; Indrani Dasgupta; Lina Bokhetache; Masaya Fujita; Fathi Karouia; Prahathees Eswara Moorthy; Johnathan Siefert; Akif Uzman; Prince Buzumbo; Avani Verma; Hiba Zwiya

Background Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, γ-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. Principal Findings The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. Significance This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.


PLOS ONE | 2013

Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores

Madhan R. Tirumalai; Rajat Rastogi; Nader Zamani; Elisha O’Bryant Williams; Shamail Allen; Fatma Diouf; Sharon Kwende; George M. Weinstock; Kasthuri Venkateswaran; George E. Fox

The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASAs Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work.


Genome Announcements | 2015

Extreme Sensory Complexity Encoded in the 10-Megabase Draft Genome Sequence of the Chromatically Acclimating Cyanobacterium Tolypothrix sp. PCC 7601

Shaila Yerrapragada; Animesh Shukla; Kymberlie Hallsworth-Pepin; Kwangmin Choi; Aye Wollam; Sandra W. Clifton; Xiang Qin; Donna M. Muzny; Sriram Raghuraman; Haleh Ashki; Akif Uzman; Sarah K. Highlander; Bartlomiej G. Fryszczyn; George E. Fox; Madhan R. Tirumalai; Yamei Liu; Sun Kim; David M. Kehoe; George M. Weinstock

ABSTRACT Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome.


Extremophiles | 2013

An ICEBs1-like element may be associated with the extreme radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores.

Madhan R. Tirumalai; George E. Fox

Comparisons of the genomes of Bacillus pumilus SAFR-032 and the closely related type strain, B. pumilus ATCC7061T, exposed an extended region of non-homologous genes. A detailed examination of this region revealed the presence of an ICEBs1-like integrative conjugative element in SAFR-032. A similar element was subsequently located elsewhere in the ATCC7061T genome. A detailed comparison of these elements and the ICEBs1 of B. subtilis revealed extremely rapid flux in gene content, genome organization and sequence similarity. It is not clear if the B. pumilus elements as they are currently structured are functional. However, it is clear that the past involvement of these elements has brought multiple genes of unknown function to the SAFR-032 genome and these genes may be responsible for the rapid evolution that led to the extreme radiation and desiccation resistance of this organism’s spores.


npj Microgravity | 2017

The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic

Madhan R. Tirumalai; Fathi Karouia; Quyen Tran; Victor G. Stepanov; Rebekah J. Bruce; C. Mark Ott; Duane L. Pierson; George E. Fox

Microorganisms impact spaceflight in a variety of ways. They play a positive role in biological systems, such as waste water treatment but can be problematic through buildups of biofilms that can affect advanced life support. Of special concern is the possibility that during extended missions, the microgravity environment will provide positive selection for undesirable genomic changes. Such changes could affect microbial antibiotic sensitivity and possibly pathogenicity. To evaluate this possibility, Escherichia coli (lac plus) cells were grown for over 1000 generations on Luria Broth medium under low-shear modeled microgravity conditions in a high aspect rotating vessel. This is the first study of its kind to grow bacteria for multiple generations over an extended period under low-shear modeled microgravity. Comparisons were made to a non-adaptive control strain using growth competitions. After 1000 generations, the final low-shear modeled microgravity-adapted strain readily outcompeted the unadapted lac minus strain. A portion of this advantage was maintained when the low-shear modeled microgravity strain was first grown in a shake flask environment for 10, 20, or 30 generations of growth. Genomic sequencing of the 1000 generation strain revealed 16 mutations. Of the five changes affecting codons, none were neutral. It is not clear how significant these mutations are as individual changes or as a group. It is concluded that part of the long-term adaptation to low-shear modeled microgravity is likely genomic. The strain was monitored for acquisition of antibiotic resistance by VITEK analysis throughout the adaptation period. Despite the evidence of genomic adaptation, resistance to a variety of antibiotics was never observed.Evolution: Bacteria gain advantageous mutations under simulated microgravityBacteria grown for an extended period of time under simulated microgravity adopt growth advantages. George Fox and colleagues from the University of Houston, Texas, USA, cultured Escherichia coli bacteria for 1000 generations in a high aspect rotating vessel to simulate the low fluid shear microgravity environment encountered during spaceflight. They then performed growth competition assays and found that the 1000-generation adapted bacteria outcompeted control bacteria grown without simulated microgravity. Genomic sequencing of the adapted bacteria revealed 16 mutations, five of which altered protein sequences. These DNA changes likely explain the growth advantage of the bacteria grown for multiple generations in simulated microgravity. Similar adaptations during prolonged space missions could result in nastier pathogens that might threaten the health of astronauts. Fortunately, the microbes did not appear to acquire antibiotic resistance over the 1000 generation in the modeled microgravity culture.


Proceedings of SPIE | 2012

Long-term exposure of bacterial cells to simulated microgravity

Fathi Karouia; Madhan R. Tirumalai; Mayra Nelman-Gonzalez; Clarence Sams; Mark C. Ott; Richard C. Willson; Duane L. Pierson; George E. Fox

Previous space flight experience has demonstrated that microorganisms are just as ubiquitous in space habitats as they are on Earth. Numerous incidences of biofilm formation within space habitats have been reported; some of which were identified only after damage to spacecraft structures and irritation to astronaut’s skin occurred. As we increase the duration of spaceflight missions, it becomes legitimate to question the long-term effects of microgravity on bacteria. To begin this assessment, Escherichia coli K-12 strain MG1655 was grown for one thousand generations (1000G) under low shear modeled microgravity. Subsequently, growth kinetics and the presence of biofilm were assessed in the 1000G strain as compared to a strain (1G) briefly exposed to LSMMG. Overall, the analysis revealed that (i) there was no obvious difference in growth kinetics between the 1G and 1000G strains, and (ii) although biofilm formation was not seen in the 1G strain it did in fact occur as exposure time increased. The results suggest that long-term exposure to the space environment likely favors biofilm formation in many organisms.


BMC Microbiology | 2018

Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: a whole genome comparison of two spacecraft assembly facility isolates

Madhan R. Tirumalai; Victor G. Stepanov; Andrea Wünsche; Saied Montazari; Racquel O. Gonzalez; Kasturi Venkateswaran; George E. Fox

BackgroundBacillus strains producing highly resistant spores have been isolated from cleanrooms and space craft assembly facilities. Organisms that can survive such conditions merit planetary protection concern and if that resistance can be transferred to other organisms, a health concern too. To further efforts to understand these resistances, the complete genome of Bacillus safensis strain FO-36b, which produces spores resistant to peroxide and radiation was determined. The genome was compared to the complete genome of B. pumilus SAFR-032, and the draft genomes of B. safensis JPL-MERTA-8-2 and the type strain B. pumilus ATCC7061T. Additional comparisons were made to 61 draft genomes that have been mostly identified as strains of B. pumilus or B. safensis.ResultsThe FO-36b gene order is essentially the same as that in SAFR-032 and other B. pumilus strains. The annotated genome has 3850 open reading frames and 40 noncoding RNAs and riboswitches. Of these, 307 are not shared by SAFR-032, and 65 are also not shared by MERTA and ATCC7061T. The FO-36b genome has ten unique open reading frames and two phage-like regions, homologous to the Bacillus bacteriophage SPP1 and Brevibacillus phage Jimmer1. Differing remnants of the Jimmer1 phage are found in essentially all B. safensis / B. pumilus strains. Seven unique genes are part of these phage elements. Whole Genome Phylogenetic Analysis of the B. pumilus, B. safensis and other Firmicutes genomes, separate them into three distinct clusters. Two clusters are subgroups of B. pumilus while one houses all the B. safensis strains. The Genome-genome distance analysis and a phylogenetic analysis of gyrA sequences corroborated these results.ConclusionsIt is not immediately obvious that the presence or absence of any specific gene or combination of genes is responsible for the variations in resistance seen. It is quite possible that distinctions in gene regulation can alter the expression levels of key proteins thereby changing the organism’s resistance properties without gain or loss of a particular gene. What is clear is that phage elements contribute significantly to genome variability. Multiple genome comparison indicates that many strains named as B. pumilus likely belong to the B. safensis group.


Journal of Molecular Evolution | 2018

Exploration of RNA Sequence Space in the Absence of a Replicase

Madhan R. Tirumalai; Quyen Tran; Maxim Paci; Dimple Chavan; Anuradha Marathe; George E. Fox


Archive | 2010

Transcriptional and Physiological Characterizations of Escherichia coli MG1655 that have been grown under Low Shear Stress Environment for 1000 Generations

Fathi Karouia; Madhan R. Tirumalai; Mayra Nelman-Gonzalez; Clarence Sams; Mark C. Ott; Duane L. Pierson; Yuriy Fofanov; Richard C. Willson; George E. Fox

Collaboration


Dive into the Madhan R. Tirumalai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fathi Karouia

University of California

View shared research outputs
Top Co-Authors

Avatar

Akif Uzman

University of Houston–Downtown

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yamei Liu

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Alicia Hawes

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christian Buhay

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christie Kovar

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Clarence Sams

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge